

## Measuring the <sup>39</sup>K(p,γ)<sup>40</sup>Ca reaction with DRAGON *Phil Adsley parsley@tamu.edu*





Globular clusters: what are they and what's the motivation in studying them?

# What are globular clusters? IM | TEXAS A&M

Ancient, dense groups of stars near the galaxy

Spherical, containing 10<sup>4</sup>-a few 10<sup>6</sup> stars

Old stars but not a single ancient population (I'll come back to this)

Dense enough that collisions between stars might take place





# Using globular clusters!



Arkelyan, N.R., Pilipenko, S.V. Globular Cluster as Indicators of Galactic Evolution. Astron. Rep. 66, 191–199 (2022)

Ā M

Blue clusters - accreted Red clusters - formed as part of the Milky Way

TEXAS A&M

Hierarchical model of galaxy formation - galaxies merging, lower mass galaxy tidally disrupted

Bring their GCs with them!

Information about the origin of the GCs preserved in the properties of their stellar populations, spatial dist + dynamics of the GCs



Also used to test dark-matter models

## Multiple stellar populations

Originally we thought that GCs were pristine relics of the ancient universe (like me)

That isn't the case:

Evidence includes photometric (multiple turnoffs from the main sequence)

Spectroscopic (elemental anomalies which can't have been caused by the current stars)



TEXAS A&M

## Multiple stellar populations

Originally we thought that GCs were pristine relics of the ancient universe (like me)

That isn't the case:

Evidence includes photometric (multiple turnoffs from the main sequence)

Spectroscopic (elemental anomalies which can't have been caused by the current stars)



TEXAS A&M

### **Elemental anomalies**

The most famous elemental anomaly in GCs: Na/O anticorrelation

Some (but not all) GCs (NGC 2808, 2419,  $\omega$  Centauri) also have a Mg/K anticorrelation

The origin of these anomalies is unclear



ĀM

LEXAS A&M

### The ${}^{39}$ K(p, $\gamma$ ) reaction

NGC 2419 shows Mg-K anticorrelation unclear the polluting site for the globular clusters

 ${}^{39}$ K(p, $\gamma$ ) ${}^{40}$ Ca destroys  ${}^{39}$ K - key uncertainty identified in sensitivity studies

Previous studies identified a wide range of plausible reaction rate within the astrophysically relevant region

Need better constraints on this - resonance strength depends on the proton width so measure this! :)

THE ASTROPHYSICAL JOURNAL LETTERS, 928:L11 (7pp), 2022 March 20



10

### Existing Experiments

Not the only study of this reaction:

0.156 vs 0.004 meV for the 335-keV resonance(!)

Why the large disagreement?



**TEXAS A&M** 

Ă M



### Measuring <sup>39</sup>K(p, $\gamma$ )<sup>40</sup>Ca with the DRAGON



<sup>39</sup>K beam onto the windowless gas target of the DRAGON  $^{39}$ K(p, $\gamma$ ) $^{40}$ Ca reaction  $\gamma$  rays detected in BGO array <sup>40</sup>Ca recoils selected by the separator Hit gas ionisation chamber+DSSSD at the focal plane

A M

TEXAS A&M

### **Experimental Observables**



Identify <sup>40</sup>Ca recoils (and exclude <sup>39</sup>K leaky beam) by times of flight BGO-DSSSD timing Accelerator RF-BGO timing Energy at the focal plane vs time difference

ĀM

Can use these gates to reduce the background in the separator time-of-flight from <sup>39</sup>K leaky beam

### Measuring <sup>39</sup>K(p, $\gamma$ )<sup>40</sup>Ca with the DRAGON

DRAGON experiment suggests only weak branching directly to ground but assumed = 1 in Scholz\*

\*This is the literature value! I assumed the same thing until my simulations ran...

Lesson: better  $\gamma$ -ray decay data is useful even if not directly applicable to resonance strengths



A M

### Measuring <sup>39</sup>K(p, $\gamma$ )<sup>40</sup>Ca with the DRAGON

Need to know  $\gamma$  branching to get efficiency :(

We (Shahina!) is using the Notre Dame data to try to ID possible <sup>40</sup>Ca transitions which we can use in our simulations to try to make sure that the different datasets eventually agree with each other



A M

#### Thanks to....



Probing historic pollution of globular clusters and nucleosynthesis in classical novae: a direct measurement of the  ${}^{39}K(p,\gamma){}^{40}Ca$  reaction rate with the DRAGON

Philip Adsley,<sup>1, 2, 3, 4, \*</sup> Matthew Williams,<sup>5, 6</sup> Nicolas de Séréville,<sup>7</sup> Richard Longland,<sup>8, 9</sup> Barry Davids,<sup>6</sup> Uwe Greife,<sup>10</sup> Fairouz Hammache,<sup>7</sup> Djamila Sarah Harrouz,<sup>7</sup> David Hutcheon,<sup>6</sup> Annika Lennarz,<sup>6</sup> Alison M. Laird,<sup>5</sup> François d'Oliveira Santos,<sup>11</sup> Athanasios Psaltis,<sup>12</sup> and Christopher Ruiz<sup>6, 13</sup>

<sup>1</sup>Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA <sup>2</sup>Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA <sup>3</sup>iThemba Laboratory for Accelerator Based Sciences, Somerset West 7129, South Africa <sup>4</sup>School of Physics. University of the Witwatersrand, Johannesburg 2050, South Africa <sup>5</sup>Department of Physics, University of York, Heslington, York, YO10 5DD, United Kingdom <sup>6</sup> TRIUMF, Vancouver, BC V6T 2A3, Canada <sup>7</sup>Institut de Physique Nucléaire d'Orsay, UMR8608, IN2P3-CNRS, Université Paris Sud 11, 91406 Orsay, France <sup>8</sup>North Carolina State University, Raleigh, North Carolina 27695, USA <sup>9</sup> Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA <sup>10</sup>Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA <sup>11</sup>GANIL, CEA/DRF-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen, France <sup>12</sup>Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstr. 2, Darmstadt 64289, Germany <sup>13</sup>Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 2Y2, Canada (Dated: October 6, 2024)





