(Not) Understanding globular cluster pollution through nuclear reactions

Phil Adsley - padsley@tamu.edu

It's silly season and I'm leaning into that

Outline

What even are globular clusters?

Reaction rates - what is the role of nuclear physics?

Starting simple - ²³Na and the ²²Ne(p,γ)²³Na reaction rate

Making things more complicated - ³⁰Si(³He,d)³¹P

Backwards and in heels - ${}^{39}K(p,\gamma){}^{40}Ca$ with DRAGON

Globular Clusters

Tightly bound groups of stars Their origins are somewhat mysterious (like every good protagonist)

Test beds of various models of galaxy formation, dark matter halos

Understanding how GC history will help to clarify how useful they are to test other things

P. Bianchini et al 2019 ApJL 887 L12

Multiple GC stellar populations

Globular clusters are weird originally thought to be a single generation of ancient stars but now strong evidence against that Currently observed stars are too cool to make the elements seen in their spectra - must originate from older stars but what were they?

The temperature-density conditions are unclear because some nuclear reaction rates are unclear

Critical reactions for GC pollution

Hydrogen burning - abundance pattern gives information on the temperature+density conditions in the originating star For Na-O anticorrelation: ²²Ne(p, γ)²³Na is the main source of uncertainty For Mg-K anticorrelation: (p,γ) reactions on ³⁰Si, ³⁷Ar, ³⁸Ar, 39**K**

What can abundance anomalies tell us?

IN THEORY, we can identify the polluting side in GCs from the abundance pattern

However, there are some mutual inconsistencies - NGCs 2419 and 2808 and ω Centurai have Mg/K anti-correlation but Na is destroyed at the temperatures at which K is produced so these can't be made in the same site

Bastian and Lardo: "it is not clear if [K abundances are] a promising window into the MP phenomenon, or instead pathological cases that confuse the THE ASTROPHYSICAL JOURNAL LETTERS, 928:L11 (7pp), 2022 March 20

What do we need to know?

Need reaction rates to constrain the physical conditions of previous stars Reaction rates dominated by resonances

Need energy, spin/parity, partial widths/resonance strengths

Resonance strength = area under the curve for narrow resonances

Nuclear data inputs

Some information about nuclear physics in here!

Where are the resonances? What are the spins? Widths? Widths depend strongly on L

Lots to find out - need to be systematic about it

22 Ne(p, γ) 23 Na through 23 Na(p,p') 23 Na

Role of ²²Ne(p,γ)²³Na

Federico Ferraro 2018 J. Phys.: Conf. Ser. 940 012041

Destroys ²²Ne and makes ²³Na ²³Na is the only stable sodium isotope so the [Na/O] anticorrelation must depend on ²³Na Need to know how ²³Na is made (this reaction) and destroyed (²³Na+p reactions to ²⁰Ne and ²⁴Mg) Hot Bottom Burning one possible site for sodium production - want the rate down to 70 MK

Status of ${}^{22}Ne(p,\gamma){}^{23}Na$

LUNA have done amazing work on direct measurements One main source of uncertainty is whether a low-energy resonance exists (and its strength if it does) The evidence for its existence is really really bad inconclusive

 22 Ne(p, γ) 23 Na and 23 Na(p,p')

In order to rule a state out as important, need very stringent measurements of low resonance strengths - beating LUNA is hard! ²²Ne(³He,d)²³Na measurements one found these states, one didn't Need to look for these resonances in as non-selective a way as possible

Channel

Experimental details

14-MeV proton beam on a NaF target

Background data taken with carbon target, also LiF (for F) and SiO₂ (for O) Protons detected at the focal plane: position = E_x Excellent energy resolution of ~8 keV FWHM

Why use proton scattering?

Counts per 0.6 keV

Studying ²⁶Mg - resolved discrepancies between (α, α') , (γ, γ') and fusion-evaporation by showing that there are three states just above $E_x = 10.8$ MeV

Proton scattering at these energies is fairly indiscriminate! Other reactions (α or γ scattering, resonance reactions, transfer) are selective which is great *if* you want to be selective

In this case we want to know how many states there are and where without any/much selection

The states do not exist

The green lines are the important ones - tentative ²³Na states that we don't see (Yes, that is a Mean Girls reference)

From our ²³Na(p,p') data, we see that there is no strength at $E_r = 65$ and 100 keV

Strong evidence against these resonances existing - we suggest omitting them in future Proving a negative is hard but between this and the previous transfer study we see no support for the existence of the states

Diana Carrasco-Rojas TREND student Matt Williams UTEP+Cyc Inst. I wonder where he is Now PhD student at now? MD Anderson

³⁰Si(p,_γ)³¹P through ³⁰Si(³He,d)³¹P

This reaction is one of the most impactful in defining the temperature of the polluting site in GCs

Bottleneck in moving from ~Mg to ~Ca

Direct and indirect measurements of this reaction were performed Direct measurement @ DRAGON Indirect ³⁰Si(³He,d)³¹P experiment with the Munich Q3D

Q3D Experiment

25-MeV ³He on a ³⁰SiO₂ target

Populate states in ³¹P

Again, from the focal-plane position get E_x

Resonance strengths at low E_{cm} depend a mostly on the proton widths

Get these from the shape (for orbital angular momentum) and magnitude of the transfer cross section...

Djamila Sarah Harrouz IJCLab

How can transfer reactions help us?

Transfer cross sections are sensitive to the orbital angular momentum transferred and the spectroscopic factor Calculate the proton width by using this relationship If you do the calculations consistently between the DWBA and the partial width, the systematic error is still huge but smaller :)

wavefunction at the nuclear surface

Q3D Experiment

25-MeV ³He on a ${}^{30}SiO_2$ target

Populate states in ³¹P

Get widths from the shape (for orbital angular momentum) and magnitude of the transfer cross section

Reduce uncertainties in the rate significantly

One remaining problem is the unknown spin-parity of the 149-keV resonance - there are some Gammasphere data which may help

Djamila Sarah Harrouz IJCLab

Rate evaluation

Reaction destroys K - higher rate = less K left over

R. Longland, J. Dermigny, and C. Marshall (PRC 98, 025802) performed a rate evaluation based on known ⁴⁰Ca nuclear data

337-keV resonance is the critical one, 606 and 666 also important

Measuring 39 K(p, γ) 40 Ca with the DRAGON

³⁹K beam onto the windowless gas target of the DRAGON 39 K(p, γ) 40 Ca reaction γ rays detected in BGO array ⁴⁰Ca recoils selected by the separator Hit gas ionisation chamber+DSSSD at the focal plane

Experimental Observables

Identify ⁴⁰Ca recoils (and exclude ³⁹K leaky beam) by times of flight BGO-DSSSD timing Accelerator RF-BGO timing Energy at the focal plane vs time difference

Can use these gates to reduce the background in the separator time-of-flight from ³⁹K leaky beam

Recent Notre Dame results

At this point, I need to mention another recent paper from ND Direct measurement of resonance strengths for this reaction in normal kinematics Resonance strengths are smaller that previous evaluation For $E_r = 337$ keV, imply that we should have had ~60 recoils total not 60 recoils detected

Someone is wrong!

Probably, and I think I know why it's them There's ⁴¹K and ¹⁹F in the targets with considerable background at lower energies They assume branching ratios from the literature which are inconsistent with the **DRAGON** results

What next?

Need to finish simulations of the γ decays to get the BGO efficiency but we don't know the decay branching Also need to get charge-state fractions (but Ca is turning out to be a problem at TRIUMF with OLIS)

Summary

Globular clusters are confusing and understanding nuclear reaction rates may make them less confusing

- There are a variety of nuclear reactions which can be used to improve knowledge of reaction rates
- Boring reactions like (p,p') at lowish energy are rather useful and we should do more of them - pyramids are built from the bottom

We're closing in on having well-constrained rates for half of the reactions of important for globular clusters - proton captures on ^{37,38}Ar need work

Collaborators

PHYSICAL REVIEW C 105, 015805 (2022)

Editors' Suggestion

Experimental study of the 30 Si(3 He, d) 31 P reaction and thermonuclear reaction rate of 30 Si(p, γ) 31 P

D. S. Harrouz¹, N. de Séréville,^{1,*} P. Adsley^{2,3,†} F. Hammache,¹ R. Longland^{4,5} B. Bastin,⁶ T. Faestermann⁵,⁷ R. Hertenberger ⁶, ⁸ M. La Cognata ⁶, ⁹ L. Lamia, ^{9,10} A. Meyer, ¹ S. Palmerini ⁶, ^{11,12} R. G. Pizzone ⁶, ⁹ S. Romano, ^{9,10,13} A. Tumino,9,14 and H.-F. Wirth8 ¹Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France ²School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa ³iThemba Laboratory for Accelerator Based Sciences, Somerset West 7129, South Africa ⁴North Carolina State University, Raleigh, North Carolina 27695, USA ⁵Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA ⁶Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Boulevard Henri Becquerel, 14076 Caen, France ⁷Physik Department E12, Technische Universität München, D-85748 Garching, Germany ⁸ Fakultät für Physik, Ludwig-Maximilians-Universität München, D-85748 Garching, Germany ⁹Laboratori Nazionali del Sud–Istituto Nazionale di Fisica Nucleare, Via Santa Sofia 62, 95123 Catania, Italy ¹⁰Dipartimento di Fisica e Astronomia E. Majorana, Università di Catania, 95131 Catania, Italy ¹¹Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, 06123 Perugia, Italy 12 Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, 06123 Perugia, Italy 13 Centro Siciliano di Fisica Nucleare e Struttura della Materia (CSFNSM), 95123 Catania, Italy ¹⁴Facoltà di Ingegneria e Architettura, Università degli Studi di Enna, 94100 Enna, Italy

In loving memory of the Munich Q3D and the beer vending machine in the lab

Searching for possible resonance states in ${}^{22}\mathrm{Ne}(p,\gamma){}^{23}\mathrm{Na}$

D. P. Carrasco-Rojas,^{1,*} M. Williams,^{2,†} P. Adsley,^{3,4,5,6,‡} L. Lamia,⁷ B. Bastin,⁸ T. Faestermann,⁹ C. Foug^{*}eres,⁸ D. S. Harrouz,¹⁰ R. Hertenberger,¹¹ M. La Cognata,⁷ A. Meyer,¹⁰ F. de Oliveira,⁸ S. Palmerini,¹² R. G. Pizzone,⁷ S. Romano,⁷ N. de Séréville,¹⁰ A. Tumino,⁷ and H.-F. Wirth¹¹ ¹Department of Physics, University of Texas at El Paso, El Paso, TX 79968-0515, USA ²TRIUMF, Vancouver, BC V6T 2A3, Canada
³Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA ⁴Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA ⁵iThemba Laboratory for Accelerator Based Sciences, Somerset West 7129, South Africa ⁶School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa ⁶School del Sud - Listituto Nazionale di Fisica Nucleare, Via Santa Sofia 62, 95123 Catania, Italy ⁸CANIL, CEA/DRF-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen, France ⁹Physik Department E12, Technische Universitä München, D-85748 Garching, Germany ¹⁰Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orasu, France ¹¹Fakultät für Physik, Luduig-Maximilians-Universitä dinchen, D-85748 Garching, Germany ¹²Dipartimento di Fisica e Geologia, Universitä degli Studi di Perugia, Perugia, Italy Probing historic pollution of globular clusters: a direct measurement of the ${}^{39}{\rm K}(p,\gamma){}^{40}{\rm Ca}$ reaction rate with the DRAGON

Philip Adsley,^{1,2,3,4,*} Matthew Williams,^{5,6} Nicolas de Séréville,⁷ Richard Longland,^{8,9} Barry Davids,⁶ Uwe Greife,¹⁰ Fairouz Hammache,⁷ Sarah Harrouz,⁷ David Hutcheon,⁶ Annika Lennarz,⁶ Alison M. Laird,⁵ François d'Oliveira Santos,¹¹ Athanasios Psaltis,¹² and Christopher Ruiz^{6,13}

¹Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA ²Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA ³iThemba Laboratory for Accelerator Based Sciences, Somerset West 7129, South Africa ⁴School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa ⁵Department of Physics, University of York, Heslington, York, YO10 5DD, United Kingdom ⁶TRIUMF, Vancouver, BC V6T 2A3, Canada ⁷Institut de Physique Nucléaire d'Orsay, UMR8608, IN2P3-CNRS, Université Paris Sud 11, 91406 Orsay, France ⁸North Carolina State University, Raleigh, North Carolina 27695, USA ⁹ Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA ¹⁰Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA ¹¹GANIL, CEA/DRF-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen. France ¹²Institut für Kernphusik, Technische Universität Darmstadt, Schlossgartenstr. 2. Darmstadt 64289. Germany ¹³Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 2Y2, Canada (Dated: September 7, 2022)