Liénard-Wiechat Potentials
Point charge of moving along path $\vec{\omega}(t)$

$$
\Rightarrow p=q \delta^{(3)}(\vec{r}-\vec{\omega}(t)) ; \vec{J}=q \vec{v} \delta^{(3)}(\vec{r}-\vec{\omega}(t))
$$

In principle; t's easy to plug into integral for $V, \vec{A}$ :

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\vec{r}^{\prime} \dot{t}_{r}\right)}{r} d \tau^{\prime}
$$

But tr being a fin of $\vec{r}^{\prime}$ complicates things!
Griffith:: geometric argrenment with moving tain to conclude the colum e $d \tau^{\prime}$ depends on $\vec{v}$

Better: Bite the bullet and look ahead to special relativity:

$$
V \xrightarrow{\substack{\text { SPECIAL } \\ \text { REL }}} \frac{1}{4 \pi \varepsilon_{0}} \int \frac{q \delta^{(3)}\left(\vec{r}^{\prime}-\vec{\omega}\left(t^{\prime}\right)\right) \delta\left(t^{\prime}-t_{r}\right)}{r} d x^{\prime} d y^{\prime} d z^{\prime} d t^{\prime}
$$

$\int d t^{\prime}$ doesnt just set $t^{\prime}=t_{r}$ because $t_{r}=t-\frac{n}{c}$
depends on $t^{\prime}$ indirectly through $r=\left|\vec{r}-\vec{\omega}\left(t^{\prime}\right)\right|$

Our time-dependent $\delta-f_{n}^{\prime \prime}$ is $\delta\left[t^{\prime}-t+\frac{\left|\overrightarrow{-}-\vec{\omega}\left(t^{\prime}\right)\right|}{c}\right]$

$$
=\delta\left(f\left(t^{\prime}\right)\right)
$$

Example $1.15(\mathrm{pg} 48)$ showed $\delta(k x)=\frac{1}{|k|} \delta(x)$.
P332 generalized: If $f\left(k_{0}\right)=0$, then

$$
\delta\left(f\left(x_{0}\right)\right)=\frac{1}{\left|f^{\prime}\left(x_{0}\right)\right|} \delta\left(x-x_{0}\right) .
$$

Forms: $\left|\vec{r}-\vec{\omega}\left(t^{\prime}\right)\right|=\sqrt{\left(\vec{r}-\vec{\omega}\left(t^{\prime}\right)\right)^{2}} \Rightarrow$

$$
\begin{aligned}
& \frac{d}{d t^{\prime}}=\frac{1}{2} \frac{2\left(\vec{r}-\vec{\omega}\left(t^{\prime}\right)\right) \cdot\left[-\vec{v}\left(t^{\prime}\right)\right]}{\left|\vec{r}-\vec{\omega}\left(t^{\prime}\right)\right|}=-\hat{r} \cdot \vec{v} \\
& \quad \Rightarrow f^{\prime}\left(t_{r}\right)=\left\lvert\,-\frac{\hat{r} \cdot \vec{v}}{c}\right.
\end{aligned}
$$

Note: Always $>0 \Rightarrow$ cauldron 11
Bottom line: $\int d t^{\prime}$ sets $t^{\prime}=t_{r} \underline{\underline{\text { AND }}} * \frac{1}{1-\frac{\hat{\hat{r}} \cdot \vec{v}}{c}} \Rightarrow$

L-W

$$
\begin{aligned}
& \left.V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{\sim\left[1-\frac{\hat{n} \cdot \vec{v}}{c}\right]}\right]=\frac{1}{4 \pi \varepsilon_{0}} \frac{q c}{R c-\vec{R} \cdot \vec{v}}: \quad \text { Eq. } 10.46 \\
& A=\frac{\mu_{0}}{4 \pi} \frac{q \vec{v}}{r\left[1-\frac{\hat{r} \cdot \vec{v}}{c}\right]}=\frac{\mu_{0}}{4 \pi} \frac{q c \vec{v}}{n c-\vec{r} \cdot \vec{v}}=\vec{v} \vec{v}^{c^{2}} V_{1}^{\prime} \text { eq. } 10.47
\end{aligned}
$$

Signal front locations at time 5d/c emitted from a charged particle at rest at six equally spaced times:
$t=0 \quad$ (large blue circle of radius $5 d$ )
$t=d / c \quad$ (red circle of radius $4 d$ )
$t=2 d / c \quad$ (green circle of radius $3 d$ )
$t=3 d / c \quad$ (blue circle of radius $2 d$ )
$t=4 d / c \quad$ (red circle of radius $d$ )
$t=5 d / c \quad$ (green point; seen at instant of emission)


Same signal fronts, but now emitted from a charged particle moving to the right at $v=0.8 c$ :

The points indicate where the particle is located when a given signal is emitted.


WATCH OUT!
Ir the Liénard-Wiechat potentials, all quantities that depend on the particle motion:

$$
\vec{r}^{\prime}=\vec{\omega}, \vec{r}, \vec{v}
$$

are calculated at $t$, not at $t$.
Many texts use []or [ ]ret to make explicit which quantities are to be calculated at the retarded tine. Griffith leaves it for you to figure ort on your own.

Furthermore, $t_{r}$ is often mot easy to calculate!
Exagle: Simplest possible case: $\begin{aligned} \vec{v} & =\text { cont } \\ \vec{v} & =\vec{v} t\end{aligned} \Rightarrow$

$$
\left|\vec{r}-\vec{\omega}\left(t_{r}\right)\right|=\left|\vec{r}-\vec{v} t_{r}\right|=c\left(t-t_{r}\right) \Rightarrow
$$

$$
\text { (et origin@ } t=0 \text { ) }
$$

Square both sides:

$$
\begin{aligned}
& \left(\vec{r}-\vec{v} t_{r}\right) \cdot\left(\vec{r}-\vec{v} t_{r}\right)=c^{2}\left(t-t_{r}\right)^{2} \\
\Rightarrow & r^{2}-2 \vec{r} \cdot \vec{v} t_{r}+v^{2} t_{r}^{2}=c^{2} t^{2}-2 c^{2} t t_{r}+c^{2} t_{r}^{2} \\
\Rightarrow & \left(c^{2}-v^{2}\right) \cdot t_{r}^{2}-2\left(c^{2} t-\vec{r} \cdot \vec{v}\right) t_{r}+\left(c^{2} t^{2}-r^{2}\right)=0
\end{aligned}
$$

Quadratic forme la:

$$
t_{r}=\frac{\left(c^{2} t-\vec{r} \cdot \vec{v}\right) \pm \sqrt{\left(c^{2} t-\vec{r} \cdot \vec{v}\right)^{2}+\left(c^{2}-v^{2}\right)\left(r^{2}-c^{2} t^{2}\right)}}{c^{2}-v^{2}}
$$

Griffith s uses $\vec{v}=0$ to choose the sign.
Iprefer:
(a) Squaring added a second solution
(b) That solution has " $t-t_{r}^{\prime \prime}<0 \Rightarrow t_{r}-t^{4}>0$
(c) It's the advanced time solution! We doit want it.
$\Rightarrow$ Must adopt - sign solutionto our quadratic eq.

Consider the denominator in L-W potentials:

$$
\begin{aligned}
& n\left[1-\frac{\hat{\hat{r} \cdot \vec{v}}}{c}\right]=\overbrace{c\left(t-t_{r}\right)}^{r}[1-\frac{\overbrace{\vec{r}-\vec{v} t_{r}}^{c\left(t-t_{r}\right)}}{\hat{r}} \cdot \frac{\vec{v}}{c}] \\
& =c\left(t-t_{r}\right)-\frac{\vec{r} \cdot \overrightarrow{0}}{c}+\frac{v^{2}}{c} t_{r} \\
& \begin{array}{l}
=\frac{1}{c}\left[\left(c^{2} t-\vec{r} \cdot \vec{v}\right)-\left(c^{2}-v^{2}\right) t_{r}\right] \\
=\frac{1}{c} \sqrt{\left(c^{2} t-\vec{r} \cdot \vec{v}\right)^{2}+\left(c^{2}-v^{2}\right)\left(r^{2}-c^{2} t^{2}\right)}
\end{array} \\
& \Rightarrow V(\vec{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q c}{\sqrt{\left(c^{2} t-\vec{r} \cdot \vec{v}\right)^{2}+\left(c^{2}-v^{2}\right)\left(r^{2}-c^{2} t^{2}\right)}} \\
& \vec{A}(\vec{r}, t)=\mu_{0} \varepsilon_{0} \vec{v} V=\frac{\vec{v}}{c^{2}} V \\
& \begin{array}{l}
\text { FROM } \\
\text { QUAD FORMULA }
\end{array} \\
& \begin{array}{l}
\text { Eq. } \\
10.49
\end{array} \\
& \text { Eq. }
\end{aligned}
$$

give $V$ and $\vec{A}$ as function of only of the coordinates and tine where you wait them.
Retarded time dependence has been removed, leaving expressions that look way more complicated than original L-S potentials.

A uprising simplification is possible in this constant velocity case:


Let $\vec{R}=\vec{r}-\vec{v} t$ be vector from current becalion

Then:

$$
\begin{aligned}
& \left(c^{2} t-\vec{r} \cdot \vec{v}\right)^{2}+\left(c^{2}-v^{2}\right)\left(r^{2}-c^{2} t^{2}\right) \\
& =c^{4} t^{2}-2 c^{2} t \vec{r} \cdot \vec{v}+(\vec{r} \cdot \vec{v})^{2}+c^{2} r^{2}-v^{2} r^{2}-4^{4} t^{2}+c^{2} v^{2} t^{2} \\
& =\underbrace{\left[r^{2}-2 \vec{r} \cdot(\vec{v} t)+v^{2} t^{2}\right]}_{(\vec{r}-\vec{v} t)^{2}=R^{2}}-\underbrace{\left[r^{2} v^{2}-(\vec{r} \cdot \vec{v})^{2}\right]}_{r^{2} v^{2}\left(1-\cos ^{2} \theta_{0}\right)} \\
& =r^{2} v^{2} \sin ^{2} \theta_{0} \\
& =R^{2} v^{2} \sin ^{2} \theta \\
& =R^{2} c^{2}\left(1-\frac{v^{2}}{c^{2}} \sin ^{2} \theta\right) \Rightarrow \\
& V(\vec{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{R \sqrt{1-\frac{v^{2}}{c^{2} \sin ^{2} \theta}}} \text { with } R+\theta \text { from current rotation }
\end{aligned}
$$

