Physics 305 - Homework Set 5

Due in my mailbox before 4 pm on Thursday, Mar. 5

Do the following five problems from Griffiths:
9.19 (pg 415).

Skip part (a). In parts (b) and (c), assume that $\varepsilon=\varepsilon_{0}$ and $\mu=\mu_{0}$ for both metals.
9.21 (pg 416).
9.25 (pg 424).
9.26 (pg 424)

For part (b), also make graphs of the phase velocity, v_{p} / c, and absorption coefficient, α, over the same range of " x ".
Note: This is another problem to give you a sense of the numbers.
9.39 (pg 433-35).

Griffths, Problem 9.19
(b) From Eq. $9.128, d=\frac{1}{k}$.

From Eq. $9.126, K=\omega \sqrt{\frac{\sum \mu}{2}}\left[\sqrt{1+\left(\frac{\sigma}{2 \omega}\right)^{2}}-1\right]^{1 / 2}$.
Table 7.1 gives $\rho=\frac{1}{\sigma}=1.5 q * 10^{-\varepsilon} \Omega \cdot m$. Thus, taking $\varepsilon=\varepsilon_{0}+\mu=\mu_{0}$, we have $\frac{\sigma}{\varepsilon \omega}=\frac{1}{\left(1.5 q * 10^{-8} \Omega \cdot \mathrm{~m}\right)\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}}\right)\left(2 \pi * \frac{10^{10}}{\mathrm{~s}}\right)}$ $=1.13 * 10^{8}$ (a pure number - the unto really work!)

$$
\Rightarrow K \approx 2 \pi * \frac{10^{10}}{\beta} \frac{1}{\sqrt{2}} \frac{1}{3,00 * 10^{8} \frac{m}{3}}\left(1.13 \times 10^{8}\right)^{1 / 2}=\frac{1.58 * 10^{6}}{m} \Rightarrow
$$

The Akin-legth is $0.64 * 10^{-6} \mathrm{~m}=0.64 \mu \mathrm{~m}$.
Make the silver coating a fou times this, and youll be fine.
(c) Once again, $\frac{\sigma}{\varepsilon \omega} \gg 1$, so $k \approx \omega \sqrt{\frac{\varepsilon \mu}{2}} \sqrt{\frac{\sigma}{\varepsilon \omega}}=\sqrt{\frac{\mu \omega \sigma}{2}}$

$$
=\sqrt{\left(4 \pi * 10^{-7} \frac{\mathrm{~N}}{\bar{A}^{2}}\right)\left(2 \pi * \frac{10^{6}}{\mathrm{~s}}\right)\left(\frac{1}{\left(1.68 * 10^{-8} \Omega \cdot \mathrm{~m}\right)} \frac{1}{2}\right.}=\frac{1.53 \times 10^{4}}{\mathrm{~m}}
$$

Thus, $\lambda=\frac{2 \pi}{k}=\frac{2 \pi}{1.53 * 10^{4}} \frac{\mathrm{~m}}{k}=4.1 * 10^{-4} \mathrm{~m}=0.41 \mathrm{~mm}$

$$
v=\frac{\omega}{k}=\frac{2 \pi * \frac{10^{6}}{\mathrm{~s}}}{1.5 \frac{10^{4}}{\mathrm{~m}}}=410 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The equivalent values in vacuum would be:

$$
\lambda=\frac{v}{f}=\frac{3,00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}}{\frac{10^{6}}{\mathrm{~s}}}=300 \mathrm{~m} \text { and } v=3.00 * 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \text {. }
$$

Then again, the wave is attenuating so quickly it hardly makes sense
to coll it a "wove".

Griffith, Problem 9. 21
(a) By combining Eq, 9771 and Prob- 9.12, we get:

$$
\begin{aligned}
\langle u\rangle & =\frac{1}{4}\left(\varepsilon \vec{E} \cdot \tilde{\vec{E}}^{*}+\frac{1}{\mu} \tilde{\vec{B}} \cdot \vec{B}^{*}\right) \\
& =\frac{1}{4}\left(\varepsilon E_{0}^{2} e^{-2 k z}+\frac{1}{\mu} B_{0}^{2} e^{-2 k z}\right) \\
& =\frac{1}{4} \varepsilon E_{0}^{2} e^{-2 k z}\left(1+\frac{1}{\mu \varepsilon} \frac{B_{0}^{2}}{E_{0}^{2}}\right) \quad \text { by } E q \cdot 9.137 \\
& =\frac{1}{4} \varepsilon E_{0}^{2} e^{-2 k z}\left(1+\frac{\varepsilon k}{\varepsilon k} \sqrt{1+\left(\frac{\sigma}{\varepsilon \omega}\right)^{2}}\right)
\end{aligned}
$$

In a gore conductor, $\frac{\varepsilon}{\sigma} \ll \frac{1}{\omega} \Rightarrow \frac{\sigma}{\varepsilon \omega} \gg 1$ and the second (magnetic) term completely dominates.
From Eq. $2,126,1+\sqrt{1+\left(\frac{\sigma}{2 \omega}\right)^{2}}=\frac{2 b^{2}}{\omega^{2} \varepsilon \mu} \Rightarrow$

$$
\langle u\rangle=\frac{1}{4} \psi E_{0}^{2} e^{-2 k z} \frac{\hbar k^{2}}{\omega^{2} \varepsilon \mu}=\frac{k^{2}}{2 \mu \omega^{2}} E_{0}^{2} e^{-2 k z} \text {, as given. }
$$

(b)

$$
\begin{aligned}
& =\frac{1}{2 \mu} E_{0}^{2} \sqrt{\varepsilon \mu \sqrt{1+\left(\frac{\sigma}{\varepsilon \omega}\right)^{2}}} e^{-2 k z} \cos \varphi \hat{z} \\
& \cos \varphi=\cos \left(\tan ^{-1}\left(\frac{k}{k}\right)\right)=\frac{k}{\sqrt{k^{2}+k^{2}}}=\frac{\left[1+\sqrt{1+\left(\frac{\sigma}{\varepsilon \omega}\right)^{2}}\right]^{1 / 2}}{\sqrt{2}\left[\sqrt{1+\left(\frac{\Sigma}{2 \omega}\right)^{2}}\right]^{1 / 2}} \\
& \Rightarrow|I|=\frac{1}{2 \mu} E_{0}^{2} \sqrt{\varepsilon \mu} \frac{\left[1+\sqrt{1+\left(\frac{\sigma}{2 \omega}\right)^{2}}\right]^{1 / 2}}{\sqrt{2}} e^{-\mu z}=\frac{1}{2 \mu} E_{0}^{2} \frac{k}{\omega} e^{-2 k z} \\
& =\frac{k}{2 \mu \omega} E_{0}^{2} e^{-2 k z} \text {, as desired. }
\end{aligned}
$$

Note that $\langle u\rangle v=I$, as expected.

Griffith, Problem 9.25
For the present case, Eq+ $9.170+9.171$ simplify to:

$$
\begin{aligned}
& n \approx 1+k \frac{\left.\left(\omega_{0}^{2}-\omega^{2}\right)\right)}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma_{c}^{2} \omega^{2}} \quad \text { with " } k \text { " }=\frac{N_{0}}{2 m \varepsilon_{0}} \\
& \alpha \approx \frac{2 k}{c} \frac{\gamma \omega^{2}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}}
\end{aligned}
$$

The extreme of n occur when $\frac{d n}{d\left(\omega^{2}\right)}=0 \Rightarrow$

$$
\begin{aligned}
& {\left[\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}\right](-1)-\left(\omega_{0}^{2}-\omega^{2}\right)\left[2\left(\omega_{0}^{2}-\omega^{2}\right)(-1)+\gamma^{2}\right]=0} \\
& \Rightarrow-\left(\omega_{0}^{2}-\omega^{2}\right)^{2}-\gamma^{2} \omega^{2}+2\left(\omega_{0}^{2}-\omega^{2}\right)^{2}-\left(\omega_{0}^{2}-\omega^{2}\right) \gamma^{2}=0 \\
& \Rightarrow\left(\omega_{0}^{2}-\omega^{2}\right)^{2}-\omega_{0}^{2} \gamma^{2}=0 \Rightarrow \omega_{0}^{2}-\omega^{2}= \pm \omega_{0} \gamma, \text {, the }
\end{aligned}
$$ extreme occur at $\omega=\sqrt{\omega_{0}^{2} \pm \omega_{0} \gamma}=\omega_{0} \sqrt{1 \pm \frac{\gamma}{\omega_{0}}} \approx \omega_{0}\left(1 \pm \frac{\gamma}{2 \omega_{0}}\right)$.

The width of the anomalous dispersion region is $\approx \gamma$.
The absogtion coefficient is a maximum for $\omega \approx \omega_{0}$ (when $\gamma \ll \omega_{0}$)

$$
\Rightarrow \alpha_{\text {MAX }} \approx \frac{2 k}{c} \frac{\gamma \mid \omega_{0}^{2}}{\gamma^{2} \omega_{0}^{2}}=\left\{\frac{2 k}{c \gamma}\right\}
$$

The extrema of n occur where:

$$
\begin{aligned}
& \alpha \approx \frac{2 k}{c} \frac{\gamma\left(\omega_{0}^{2} \pm \omega_{0} \gamma\right)}{\omega_{0}^{2} \gamma^{2}+\gamma^{2}\left(\omega_{0}^{2} \pm \omega_{0} \gamma\right)}=\frac{2 k}{c} \frac{\gamma\left(\omega_{0}\left(1 \pm \frac{\gamma}{\omega_{0}}\right)\right.}{\gamma \gamma_{0}^{\gamma} \omega_{0}^{2}\left(2 \pm \frac{\gamma}{\omega_{0}}\right)} \\
& \quad=\frac{k}{c \gamma} \frac{1 \pm \frac{\gamma}{\omega_{0}}}{1 \pm \frac{\gamma}{2 \omega_{0}}}=\frac{k}{c \gamma}\left(1 \pm \frac{\gamma}{2 \omega_{0}}\right) \approx \frac{1}{2}\left(\frac{2 k}{c \gamma}\right)=\frac{\alpha_{\text {max }}}{2} .
\end{aligned}
$$

Thus, the extreme ocean where $\alpha=\frac{1}{2} \alpha_{\text {max }}$, as desired.

Griffith, Problem 9,26
Define $\frac{N q^{2}}{2 m \varepsilon_{0}}=0,003 \omega_{0}^{2}=\alpha \omega_{0}^{2}$. Then from Eq. 9.170 :

$$
\begin{aligned}
& k^{=}=\frac{\omega}{c}\left[1+a \omega_{0}^{2} \frac{\left(\omega_{0}^{2}-\omega^{2}\right)}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}}\right] . \text { The group velocity is } \\
& v=\frac{d \omega}{d k} \Rightarrow \frac{1}{v g}=\frac{d k}{d \omega} \Rightarrow \frac{1}{y}=\frac{c}{v g}=c d{ }_{g} d \omega . \text { Thus, } \\
& \frac{1}{y}=1+a \omega_{0}^{2} \frac{\omega_{0}^{2}-\omega^{2}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}} \\
& +\omega \alpha \omega_{0}^{2}\left[\frac{\left[\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}\right](-2 \omega)-\left(\omega_{0}^{2}-\omega^{2}\right)\left[2\left(\omega_{0}^{2}-\omega^{2}\right)(-2 \omega)+2 \gamma^{2} \omega\right]}{\left[\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}\right]^{2}}\right. \\
& =1+a \omega_{0}^{2} \frac{\omega_{0}^{2}-\omega^{2}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}} \\
& +a \omega_{0}^{2} \\
& =\frac{(-2) \gamma^{2} \omega^{4}+2\left(\omega_{0}^{2}-\omega^{2}\right)^{2} \omega^{2}-\left(\omega_{0}^{2}-\psi_{0}^{2}\right) 2 \gamma^{2} \omega^{2}}{\left[\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}\right]^{2}} \\
& =1+a \omega_{0}^{2} \frac{\omega_{0}^{2}-\omega^{2}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}} \\
& +2 a \omega_{0}^{2} \frac{\left(\omega_{0}^{2}-\omega^{2}\right)^{2} \omega^{2}-\gamma^{2} \omega^{2} \omega_{0}^{2}}{\left(\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}\right)^{2}}
\end{aligned}
$$

Now let $x=\left(\frac{\omega_{0}}{\omega_{0}}\right)^{2}$ and redefine γ to take out $\omega_{0} \Rightarrow$

$$
\frac{1}{y}=1+a \frac{1-x}{(1-x)^{2}+\gamma^{2} x}+2 a \frac{(1-x)^{2} x-\gamma^{2} x}{\left[(1-x)^{2}+\gamma^{2} x\right]^{2}}
$$

Griffith asks for computer calculations, so- S'm not going to bother simplifying further.

Additional calculations needed for the extra plots in part 6 :
$E_{q, 9.170 \text { gives } n=\frac{c k}{\omega}}^{1-x}=\frac{c}{v_{0}}=1+a \omega_{0}^{2} \frac{\left(\omega_{0}^{2}-\omega^{2}\right)}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega_{0}^{2} \omega^{2}}$ $=1+a \frac{1-x}{(1-x)^{2}+\gamma^{2} x \text { 琶 }}$. $\frac{v_{p h}}{c}$ is the inverse of this.
Also, Eq 9,171 guides:

$$
\begin{aligned}
\alpha & =2 a \omega_{0}^{2} \frac{\omega^{2}}{c} \frac{\gamma \omega_{0}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega_{0}^{2} \omega^{2}} \\
& =2 a \frac{\gamma x}{\left.(1-x)^{2}+\gamma^{2} \times \frac{\omega_{0}}{c}\right)}\left(\frac{\omega_{0}}{c}\right. \text { specifies the }
\end{aligned}
$$ natural unit for α. Note

that $t h i \hat{s}=k$ for a wave with ω_{0} in vacuam.
a := 0.003
Overy is $1 / y$, so below I will plot $1 / O v e r y ~ v s . ~ x$
Overy $(x$, gamma $):=1+a \cdot \frac{1-x}{(1-x)^{2}+\text { gamma }^{2} \cdot x}+2 \cdot a \cdot \frac{(1-x)^{2} \cdot x-\text { gamma }^{2} \cdot x}{\left[(1-x)^{2}+\text { gamma }^{2} \cdot x\right]^{2}}$
For gamma=0, Overy diverges at $x=1$. Therefore, I'm choosing my points to plot in such a way that I avoid that particular value.
xp := 0,0.003.. 2
Here is the part (a), gamma=0, plot:

Here is the part (b), gamma=0.1, plot:

gamma := 0.1
$\operatorname{vphase}(\mathrm{x}):=\frac{1}{1+\mathrm{a} \cdot \frac{1-\mathrm{x}}{(1-\mathrm{x})^{2}+\operatorname{gamma}^{2} \cdot \mathrm{x}}}$

$$
\operatorname{alpha}(x):=2 \cdot a \cdot \frac{\text { gamma } \cdot x}{(1-x)^{2}+\text { gamma }^{2} \cdot x}
$$

Here is the phase velocity for part (b), in units c:

Here is the attenuation length for part (b), in units of omega_0/c:

Giffiths, Problem 9,39
(a) $\vec{E}_{T}(\vec{r}, t)=\tilde{E}_{o_{g}} e^{i\left(\overrightarrow{k_{r}} \cdot \vec{r}-\omega t\right)}$
with $\vec{k}_{T}=k_{T}\left(\sin \theta_{T} \hat{k}+\cos \theta_{T} \hat{z}\right)=\frac{\omega n_{2}}{c}\left[\frac{n_{1}}{n_{2}} \sin \theta_{I} \hat{x}+i \sqrt{\frac{n_{1}^{2}}{n_{2}} \sin ^{2} \theta_{I}-1} \frac{1}{z}\right]$

$$
\begin{aligned}
& =\frac{\omega n_{1}}{c} \sin \theta_{I} \hat{k}+i \frac{\omega}{c} \sqrt{n_{1}^{2} \sin ^{2} \theta_{I}-n_{2}^{2}} \hat{z} \\
& \Rightarrow e^{i\left(k_{1} \cdot \vec{r}-\omega t\right)}=e^{-\frac{\omega}{c} \sqrt{n_{1}^{2} \sin ^{2} \theta_{I}-n_{2}^{2}} z} e^{i\left(\frac{\omega}{c} n_{1} \sin \theta_{I} x-\omega t\right)} \\
& \Rightarrow K=\frac{\omega}{c} \sqrt{n_{1}^{2} \sin ^{2} \theta_{I}-n_{2}^{2}} \text { and } k=\frac{\omega}{c} n, \sin \theta_{I} \text {, as descried. }
\end{aligned}
$$

(b) Eq. 9,109 gives $R=\frac{\left|E_{0, R}\right|^{2}}{\left|E_{0_{I}}\right|^{2}}=\left|\frac{\alpha-\beta}{\alpha+\beta}\right|^{2}$

But $\alpha=i \gamma$, where $\beta+\gamma$ are neal, so $R=\left|\frac{i \gamma-\beta}{i \gamma+\beta}\right|^{2}=\frac{\gamma^{2}+\beta^{2}}{\gamma^{2}+\beta^{2}}=1$ as desired.
(c) Problem 9.17 gave $R=\left|\frac{1-\alpha \beta}{1+\alpha \beta}\right|^{2}$. Once again, $\alpha=$ is gives $\beta+\gamma$ neal. Then $R=\left|\frac{1-i \beta \gamma}{1+i \beta \gamma}\right|^{2}=\frac{1+(\beta \gamma)^{2}}{1+(\beta \gamma)^{2}}=1$, as desired.
(d) Take the phase of $\overrightarrow{\vec{E}}_{i}$ in $E_{q} \times 9.201$ to be real, and $\left|\overrightarrow{\overrightarrow{E_{0}}}\right|=E_{0}$. Then $\vec{E}=\operatorname{Re}(E q \cdot 9.201)=E_{0} e^{-k z} \cos (k x-\omega t) \hat{y}$, as desired.

$$
\begin{aligned}
& \tilde{\vec{B}}=\frac{\vec{k}}{\omega} \times \vec{E}=\frac{1}{\omega}(k \hat{x}+i k \hat{z}) \times E_{0} \hat{y} e^{-K z} e^{i(k x-\omega t)} \\
& \hat{x} \times \hat{y}=\hat{z} \text { and } \hat{z} \times \hat{y}=-\hat{x} \Rightarrow
\end{aligned}
$$

$\stackrel{\vec{B}}{ }=\frac{E_{0}}{\omega} e^{-k z}\left[k e^{i(k x-\omega t)} \hat{z}-i K e^{i(k x-\omega t)} \hat{k}\right]$. Taking the neal pats $\vec{B}=\frac{\epsilon_{0}}{\omega} e^{-k z}[k \cos (k x-\omega t) \hat{z}+k \sin (k x-\omega t) \hat{x}]$, as desired.
$9,39.2$
(e)

$$
\begin{aligned}
& \vec{E}=\vec{E}(x, z, t) \hat{y} \Rightarrow \vec{\nabla} \cdot \vec{E}=0 \\
& \vec{\nabla} \cdot \vec{B}=\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{z}}{\partial z}=\frac{E_{0}}{\omega}\left\{K e^{-K z}(k \cos (k x-\omega t))\right. \\
& \left.+\left(-K e^{-k z}\right)(k \cos (k x-\omega t))\right\}=0 \Rightarrow \vec{\nabla} \cdot \vec{B}=0 \\
& \vec{\nabla} \times \vec{E}=\frac{\partial E_{y}}{\partial x} \hat{z}-\frac{\partial E_{y}}{\partial z} \hat{x}
\end{aligned}
$$

$$
\begin{aligned}
& =-E_{0} k e^{-k z} \sin (k x-\omega t) \hat{z}+E_{0} K e^{-k z} \cos (k x-\omega t) \hat{x} \\
& -\frac{\partial \vec{B}}{\partial t}=-(-\omega) \frac{E_{0}}{\omega} e^{-k z}[K \cos (k x-\omega t) \hat{x}-k \sin (k x-\omega t) \hat{z}] \\
& =E_{0} e^{-k z}[K \cos (k x-\omega t) \hat{x}-k \sin (k x-\omega t) \hat{z}]=\vec{\nabla} \times \vec{E} \Rightarrow \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \vec{\nabla} \times \vec{B}=\left(\frac{\partial B_{x}}{\partial z}-\frac{\partial B_{z}}{\partial x}\right) \hat{y} \\
& =\frac{E_{0}}{\omega}\left[\left(-K e^{-K z}\right)(K \sin (k x-\omega t))-\left(k e^{-k z}\right)(-k \sin (k x-\omega t))\right] \hat{y} \\
& =\frac{E_{0}}{\omega}\left(k^{2}-k^{2}\right) e^{-k z} \sin (k x-\omega t) \hat{y} \\
& \text { But } k^{2}-k^{2}=\frac{\omega^{2} n_{1}^{2} \sin ^{2} \theta_{I}-\frac{\omega^{2}}{c^{2}}\left(\left(n_{1}^{2} \sin ^{2} \theta_{I}-n_{2}^{2}\right)=\frac{\omega^{2} n_{2}^{2}}{c^{2}}=\omega^{2} \mu \varepsilon\right.}{} \\
& \Rightarrow \vec{\nabla} \times \vec{B}=\omega E_{0} \mu \varepsilon e^{-k z} \sin (k x-\omega t) \hat{y} \text {. Meanwhile, } \\
& \frac{\partial \vec{E}}{\partial t}=E_{0} e^{-k z}(\underset{\substack{\text { CANCEL }}}{(-\omega)(-\sin }(k x-\omega t)) \hat{y} \Rightarrow \vec{\nabla} \times \vec{B}=\mu \varepsilon \frac{\partial \vec{E}}{\partial t}
\end{aligned}
$$

9.39 .3
(f) $\vec{S}=\vec{E} \times \vec{H}=\frac{1}{\mu}(\vec{E} \times \vec{B})$

$$
=\frac{E_{0}^{2}}{\mu \omega} e^{-2 k z}\left[-k \sin (k x-\omega t) \cos (k x-\omega t) \hat{z}+k \cos ^{2}(k x-\omega t) \hat{x}\right]
$$

$$
\left\langle\cos ^{2}\right\rangle=\frac{1}{2} \text { and }\langle\sin \cos \rangle=0 \Rightarrow
$$

$$
\langle\vec{s}\rangle=\frac{E_{0}^{2} k}{2 \mu \omega} e^{-2 k z} \hat{x}
$$

has no component in the \hat{z} direction.
Energy flows only in the $(t) \hat{x}$ disicition
Energy flows only in the $(t) \hat{x}$ direction as we expected/ hoped.

