Physics 305 - Homework Set 10
 Due submitted to eCampus no later than 5 pm on Tuesday, April 28

This is the last homework set for PHYS 305!

Do the following six problems from Griffiths:
12.35 (pg 541-42).
12.36 (pg 542).
12.41 (pg 549).
12.43 (pg 560-61).
12.48 (pg 562) Skip part (d).

Do this problem by transforming the space-time coordinates of each point in space, while simultaneously transforming the \mathbf{E} and \mathbf{B} fields at that point. Do not do it using the Lorentz transformation properties of the wave vector that we discussed in class. (Part of the point of this problem is for you to see that you end up with the same answer!) 12.60 (pg 571).

Also do the following additional problem:

If we look out toward the sky at night, we see a distribution of stars which appears to be uniform, given by $d N / d \Omega=N_{0}$. Consider an observer moving past us in the $+z$ direction with a velocity $c \beta$.
(a) What is the angular distribution of stars $d N / d \Omega$ ' seen by this observer, expressed in terms of N_{0}, β, γ, and quantities measured in her coordinate system (not ours)?
(b) Check your answer by showing that the moving observer sees the same total number of stars that we do.
Comment: Be careful with the "direction of observation." If we "see" a star in the direction (θ, φ), that means that the starlight is moving in the direction $(\pi-\theta, \pi+\varphi)$.
Reminder: $d \Omega=\sin (\theta) d \theta d \varphi$.

Griffith, Problem 12.35

The kinetic energy is $\frac{1}{2} m v^{2}$, the relative energy (in either configuration is four times the kinetic energy of either paitece in the left-hand case.
Now consider two identical relativistic particles with 4 -momenta $p_{1}+p_{2}$ observed in the collider frame (where $\vec{p}_{2}=-\vec{p}_{1}$ and the fixed-target frame where $\vec{p}_{2}=0$.
$\left(p_{1}+p_{2}\right)^{2}$ is horenty-invariant, so:

$$
\begin{aligned}
& \left(p_{1}+p_{2}\right)_{\text {Collar }}^{2}=\frac{-(E+E)^{2}}{c^{2}}+0^{2}=\left(p_{1}+p_{2}\right)_{\text {FACED-TRGGET }}^{2} \\
& =p_{1}^{2}+2 p_{1} \cdot p_{2}+p_{2}^{2}=-m^{2} c^{2}-2 \tilde{E}_{m}-m_{m}^{2} c^{2} \text { From }-\tilde{E}_{\mathrm{c}} \text { Mc }+0
\end{aligned}
$$

[Nuclear and particle physicists avoid all these mines signs!]

$$
\begin{aligned}
& \Rightarrow 2 \tilde{E} m=\frac{4 E^{2}}{c^{2}}-2 m^{2} c^{2} \Rightarrow \tilde{E}=\frac{2 E^{2}}{m c^{2}}-m c^{2} \\
E & =\frac{2(30 \mathrm{GeV})^{2}}{1 G \mathrm{GV}}-(1 \mathrm{GeV})=1799 \mathrm{GeV}
\end{aligned}
$$

This is approximately 6 times the two single proton energies.

Griffiths, Problem 12.36
A ringle plustor would meed to be ot rest in the CM frome. Rathei:

Cons of $E: \sqrt{m^{2} c^{4}+p_{i}^{2} c^{2}}+m c^{2}=E_{1}+E_{2}=p_{1} c+p_{2} c$

$$
\Rightarrow \sqrt{m^{2} c^{2}+p_{i}^{2}}+m c=p_{1}+p_{2}
$$

Cont of $p_{x}: p_{i}=p_{1} \cos 60^{\circ}+p_{2} \cos \phi \Rightarrow p_{2} \cos \phi=p_{i}-\frac{1}{2} p_{1}$
Cons of $p_{4}:{ }^{\text {: (5) }} p_{1} \sin 60^{\circ}=p_{2} \sin \varphi$

$$
(2)^{2}+(3)^{2} \Rightarrow p_{i}^{2}-p_{i} p_{1}+\frac{1}{4} p_{1}^{2}+\frac{3}{4} p_{1}^{2}=p_{2}^{2}
$$

$$
\Rightarrow p_{2}^{2}=p_{i}^{2}-p_{i} p_{1}+p_{1}^{2}
$$

Fromel, we also-have: $p_{2}^{2}=\left[m c+\sqrt{m^{2} c^{2}+p_{i}^{2}}-p_{1}\right]^{2}$

$$
=m^{2} c^{2}+2 m c \sqrt{m^{2} c^{2}+p_{i}^{2}}-2 m c p_{1}+m^{2} c^{2}+p_{i}^{2}-2 \sqrt{m^{2} c^{2}+p_{i}^{2}} p_{1}+p_{1}^{2}
$$

Equating witt (4) (and collicting the Γ 's togethar) gués:

$$
\begin{aligned}
& p_{1}^{2}-p_{i} p_{1}+p_{1}^{2}=2 m^{2} c^{2}+p_{i}^{2}-2 m c p_{1}+p_{1}^{2}+2 \sqrt{m^{2} c^{2}+p_{1}^{2}}\left(m c-p_{1}\right) \\
& \Rightarrow 0=2 m^{2} c^{2}+2 \sqrt{m^{2} c^{2}+p_{i}^{2}}(m c) \\
&-p_{1}\left[2 m c+2 \sqrt{m^{2} c^{2}+p_{i}^{2}}-p_{i}\right] \\
& \Rightarrow p_{1}= \frac{m^{2} c^{2}+\sqrt{m^{2} c^{2}+p_{i}^{2}}(m c)}{m c+\sqrt{m^{2} c^{2}+p_{i}^{2}}-\frac{1}{2} p_{i}} \Rightarrow E_{1}=m c^{2}\left[\frac{m c+\sqrt{m^{2} c^{2}+p_{i}^{2}}}{m c+\sqrt{m^{2} c^{2}+p_{i}^{2}}-\frac{1}{2} p_{i}}\right]
\end{aligned}
$$

Griffiths, Problem 12.4中
For a particle moving with \vec{u} under $\vec{E}+\vec{B}$ fields; :

$$
\vec{F}=q \vec{E}+q(\vec{u} \times \vec{B}) \stackrel{m}{=}\left[\overrightarrow{E_{q} \cdot 12.3} \sqrt{\sqrt{1-\frac{u^{2}}{c^{2}}}}+\frac{\vec{u}(\vec{u} \cdot \vec{a})}{c^{2}-u^{2}}\right]
$$

Of Idiot both side with \vec{u}, I get:

$$
\begin{aligned}
q \vec{u} \cdot \vec{E} & =\frac{u}{\sqrt{1-\frac{u^{2}}{c^{2}}}}\left[\vec{u} \cdot \vec{a}+\frac{u^{2}}{c^{2}-u^{2}} \vec{u} \cdot \vec{a}\right] \\
& =\frac{m}{\sqrt{1-\frac{u^{2}}{c^{2}}}}\left(\frac{c^{2}}{c^{2}-u^{2}}\right) \vec{u} \cdot \vec{a} \Rightarrow
\end{aligned}
$$

$\vec{u} \cdot \vec{a}=\frac{q}{m} \sqrt{1-\frac{u^{2}}{c^{2}}}\left(\frac{\varepsilon^{2}-u^{2}}{\frac{c^{2}}{c}}\right) \vec{u} \cdot \vec{E}$. Then, rearranging the above gules:

$$
\begin{aligned}
& \vec{a}=\frac{q}{m} \sqrt{1-\frac{u^{2}}{c^{2}}}[\vec{E}+\vec{q} \times \vec{B}]-\frac{\vec{u}(\vec{u} \cdot \vec{a})}{c^{2}-u^{2}} \\
&=\frac{q}{m} \sqrt{1-\frac{u^{2}}{c^{2}}}\left[\vec{E}+\overrightarrow{c^{2}} \times \vec{B}-\frac{e^{2}-u^{2}}{c^{2}\left(c^{2}-a^{2}\right)} \vec{u}(\vec{u} \cdot \vec{E})\right] \\
& \Rightarrow \vec{a}=\frac{q}{m} \sqrt{1-\frac{u^{2}}{c^{2}}}\left[\vec{E}+\vec{u} \times \vec{B}-\frac{\vec{u}(\vec{u} \cdot \vec{E})}{c^{2}}\right] \text {, as desired. }
\end{aligned}
$$

Griffith, Problem 12.43
(a) $\vec{E}_{0}=\frac{\sigma_{0}}{\Sigma_{0}}\left(\frac{\hat{y}-\hat{x}}{\sqrt{2}}\right)$
(b)

$$
\begin{aligned}
& \left.E_{x}=E_{0 \beta_{x}}=-\frac{\sigma_{0}}{\sqrt{2} \varepsilon_{0}} \quad E_{y}=\gamma E_{0 y}=\frac{\gamma \sigma_{0}}{\sqrt{2} \varepsilon_{0}} \text { (since initial } B_{z}=0\right) \\
& \Rightarrow \vec{E}=\frac{\sigma_{0}}{\sqrt{2} \varepsilon_{0}}(\gamma \hat{y}-\hat{x})
\end{aligned}
$$

(c) All x distances are seduced by a factor $\frac{1}{\gamma}$, while y distances are unchanged. The original slope of the planes is 1 , so the final slope is γ, and they make an angle $\theta=\tan ^{-1}(\gamma)$ with the x axis.
(d) From, the 1 to the plates in given by the direction $\frac{\gamma \hat{x}-\hat{y}}{\sqrt{1+\gamma^{2}}}$ For $\gamma>1$, this is not parallel or anti-p parallel to \vec{E}, no \vec{E} is not 1 to the plates in the moving frame.

Giffiths, Problem 12.48
(a) $\vec{E}=E_{0} \hat{y} \cos (k x-\omega t), \vec{B}=\frac{E_{0}}{c} \hat{z} \cos (k x-\omega t)$, with $k=\frac{\omega}{c}$.
(b)

$$
\begin{aligned}
& \vec{E}_{\perp}^{\prime}=\gamma\left(\vec{E}_{\perp}+\vec{v} \times \vec{B}_{\perp}\right)=\left(E_{0} \cos \right)(\gamma)\left(\hat{y}+\frac{v \hat{x}}{c} \times \hat{z}\right) \\
& =\left(E_{0} \cos \right) \gamma\left(1-\frac{v}{c}\right) \hat{y}=\left(E_{0} \sqrt{\frac{1-\beta}{1+\beta}} \cos \right) \hat{y} \\
& \vec{B}_{\perp}^{\prime}=\gamma\left(\vec{B}_{\perp}-\vec{\beta} \times \frac{\vec{E}_{\perp}}{c}\right)=\left(E_{0} \cos \right)(\gamma)\left(\frac{\hat{z}}{c}-\frac{v}{c} \hat{x} \times \frac{\hat{y}}{c}\right) \\
& =\left(\frac{E_{0}}{c} \cos \right) \gamma\left(1-\frac{v}{c}\right) \hat{z}=\left(\frac{E_{0}}{c} \sqrt{\frac{1-\beta}{1+\beta}} \cos \right) \hat{z} .
\end{aligned}
$$

But we also muss wite the argument of the cos interns of x^{\prime}, t^{\prime}.

$$
\begin{aligned}
& c t^{\prime}=\gamma(c t-\beta x) \quad c \quad c t=\gamma\left(c t^{\prime}+\beta x^{\prime}\right) \\
& x^{\prime}=\gamma(x-\beta c t) \Rightarrow x=\gamma\left(x^{\prime}+\beta c t^{\prime}\right) \\
& \Rightarrow t=\gamma\left(t^{\prime}+\beta \frac{x^{\prime}}{c}\right) \text { and } \\
& k x-\omega t=k\left[\gamma x^{\prime}+\gamma \beta t^{\prime}\right]-\omega\left[\gamma\left(t^{\prime} \frac{1}{\prime}+\gamma \beta \frac{x^{\prime}}{c}\right]\right. \\
& =\frac{\omega}{c} \gamma x^{\prime}+\omega \gamma \beta t^{\prime}-\omega \gamma t^{\prime}-\frac{\omega}{c} \gamma \beta x^{\prime} \\
& =\frac{\omega}{c} \gamma(1-\beta) x^{\prime}-\omega \gamma(1-\beta) t^{\prime}=\frac{\omega}{c} \sqrt{\frac{1-\beta}{1+\beta}} x^{\prime}-\omega \sqrt{\frac{1-\beta}{1+\beta}} t^{\prime}
\end{aligned}
$$

Let $\alpha=\sqrt{\frac{1-\beta}{1+\beta}}$. Then:

$$
\begin{aligned}
& \vec{E}^{\prime}=\alpha E_{0} \hat{y}^{\prime} \cos \left(\alpha k x^{\prime}-\alpha \omega t^{\prime}\right) \\
& \vec{B}^{\prime}=\alpha \frac{E_{0}}{c} \hat{z}^{\prime} \cos \left(\alpha k x^{\prime}-\alpha \omega t^{\prime}\right)
\end{aligned}
$$

(c) $\omega^{\prime}=\alpha \omega=\sqrt{\frac{1-\beta}{1+\beta}} \omega$ and $\lambda^{\prime}=\frac{2 \pi}{k^{\prime}}=\frac{2 \pi}{\alpha k}=\frac{2 \pi c}{\alpha \omega}$

$$
v=\frac{\omega^{\prime}}{2 \pi} \lambda^{\prime}=\frac{\langle\phi \psi}{z \pi} \frac{2 \pi c}{d \varphi}=c
$$ as expected.

Griffith, Problem 12. 60
The minimum evagg in the CM frame occurs when the $K+E$ are produced at net. Then $E_{c m}=500 \mathrm{MeV}+1200 \mathrm{MeV}=1700 \mathrm{MeV}$.
$E^{2}-p^{2} c^{2}$ is both consewed and horeaty invariant \Rightarrow we must have

$$
\begin{aligned}
& E_{i}^{2}-p_{i}^{2} c^{2}=(1700 \mathrm{MeV})^{2}=E_{c m}^{2} \\
& E_{i}^{2}-p_{i}^{2} c^{2}=\left(E_{\pi}+E_{p}\right)^{2}-p_{\pi}^{2} c^{2}=E_{\pi}^{2}+2 E_{\pi} E_{p}+E_{p}^{2}-p_{\pi}^{2} c^{2} \\
& =m_{\pi}^{2} c^{4}+2 E_{\pi} m_{p} c^{2}+m_{p}^{2} c^{4}=E_{c m}^{2} \Rightarrow \\
& E_{\pi}=\frac{E_{c m}^{2}-m_{\pi}^{2} c^{4}-m_{p}^{2} c^{4}}{2\left(m_{p} c^{2}\right)}=\frac{(1700 M e V)^{2}-(150 M e V)^{2}-(900 \mathrm{MeV})^{2}}{2(900 M \mathrm{MV})} \\
& =1143 \mathrm{MeV} \\
& \Rightarrow p_{\pi}=\sqrt{\frac{E_{\pi}^{2}}{c^{2}}-\frac{m_{\pi}^{2} c^{4}}{c^{2}}}=\frac{\sqrt{(1143 M e V)^{2}-(150 \mathrm{MeV})^{2}}}{c}
\end{aligned}
$$

as given in the text.
Note: This has way too many significant digits for the mass values that were giver!

Special Relativity, Extra Problem
(a) $\quad \frac{d N}{d r^{\prime}}=\frac{d N}{d \Omega} \frac{d \Omega}{d \Omega^{\prime}}=\frac{d N}{d \Omega} \frac{\sin \theta d \theta d \varphi}{\sin \theta^{\prime} d \theta^{\prime} d \varphi^{\prime}} \cdot d \varphi=d \varphi^{\prime} \Rightarrow$
$\frac{d N}{d \Omega^{\prime}}=\frac{N_{0}}{\sin \theta^{\prime}}-\frac{d(\cos \theta)}{d \theta^{\prime}}$. If we observe attar at (θ, φ) and $\left(\theta^{\prime}, \varphi^{\prime}\right)$,
then following the comment and the propagation formula we found in class, we have $\tan \left(\pi-\theta^{\prime}\right)=\frac{\sin (\pi-\theta)}{\gamma[\cos (\pi-\theta)-\beta]}$

$$
\Rightarrow-\tan \theta^{\prime}=\frac{\sin \theta}{\gamma(-\cos \theta-\beta)} \Rightarrow \tan \theta^{\prime}=\frac{\sin \theta}{\gamma(\cos \theta+\beta)} \text { transforms } \varsigma \rightarrow \delta^{\prime} \text {. }
$$

To tranaforan $\delta^{\prime} \rightarrow S$, we nwapprined + ungrinad variables and flip the sign of $\beta \Rightarrow \tan \theta=\frac{\sin \theta}{\gamma\left(\cos \theta^{\prime}-\beta\right)}$. But we need $\cos \theta$, net $\tan \theta, \theta 0$:

$$
\begin{aligned}
& \Rightarrow \frac{d(\cos \theta)}{d \theta^{\prime}}=\frac{\left(1-\beta \cos \theta^{\prime}\right)\left(-\sin \theta^{\prime}\right)-\left(\cos \theta^{\prime}-\beta\right)\left(\beta \sin \theta^{\prime}\right)}{\left(1-\beta \cos \theta^{\prime}\right)^{2}} \\
& =-\sin \theta^{\prime}\left[\frac{1-\beta \cos \theta^{\prime}+\beta \cos \theta^{\prime}-\beta^{2}}{\left(1-\beta \cos \theta^{\prime}\right)^{2}}\right]=\frac{-\sin \theta^{\prime}}{\gamma^{2}\left(1-\beta \cos \theta^{\prime}\right)^{2}} \Rightarrow
\end{aligned}
$$

$\frac{d N}{d \Omega^{\prime}}=\frac{N_{0}}{\gamma^{2}\left[1-\beta \cos \theta^{\prime}\right]^{2}}$ gives the observed distribution.
Most of the stars end up in a seal "hot spot"
near $\theta^{\prime}=0$ (i.e., in the forward direction). Science fiction movies oftenget this bock ward.
(b) We see $\int \frac{d N}{d r} d \Omega=4 \pi N_{0}$ total stars. The mowing observer sees:

$$
\begin{aligned}
& \frac{N_{0}}{\gamma^{2}} \int_{0}^{2 \pi} d \phi^{\prime} \int_{0}^{\pi} d \theta^{\prime} \frac{\sin \theta^{\prime} d \theta^{\prime}}{\left(1-\beta \cos \theta^{\prime}\right)^{2}}=\frac{2 \pi N_{0}}{\gamma^{2} \beta} \int_{0}^{\pi} \frac{\beta \sin \theta^{\prime}}{\left(1-\beta \cos \theta^{\prime}\right)^{2}} d \theta^{\prime} \\
= & \frac{2 \pi N_{0}}{\gamma^{2} \beta}\left[\frac{-1}{1-\beta \cos \theta^{\prime}}\right]_{\theta^{\prime}=0}^{\pi}=\frac{2 \pi N_{0}}{\gamma^{2} \beta}\left[\frac{1}{1-\beta}-\frac{1}{1+\beta}\right] \\
= & \frac{2 \pi N_{0}}{\gamma^{2} \beta} \frac{1+\beta-1+\beta}{1-\beta^{2}}=\frac{2 \pi N_{0}}{\gamma^{2} \beta} \frac{2 \beta}{1-\beta^{2}}=\frac{4 \pi N_{0}}{\gamma^{2}\left(1-\beta^{2}\right)}=4 \pi N_{0}
\end{aligned}
$$

\Rightarrow Both obsewens see the same total number of stars, as desired.

