Physics 305 - Sample Exam 2

There are four problems on this exam. Each problem is worth 25 points. Start each problem on a new sheet of paper, and use only one side of each sheet. GOOD LUCK !!!
(1) Assume you have two uniform, isotropic media, separated by a planar interface, with indices of refraction n_{1} and n_{2}. ($\mu_{1}=\mu_{2}=\mu_{0}$.) A plane electromagnetic wave propagating in medium 1 strikes the interface at normal incidence.
a) Derive expressions for the reflection and transmission coefficients. (Note: If you simply copy expressions from your crib sheet, you will receive zero credit for this part.)
b) What condition(s) do n_{1} and n_{2} need to obey to obtain $T=R$?
(2) A point charge q moves in a circle of radius a in the $x-y$ plane, centered on the origin, with constant angular speed ω. To be specific, assume its location at any given time is given by:

$$
a \cos (\omega t) \hat{x}+a \sin (\omega t) \hat{y}
$$

Find the Lienard-Wiechert potentials for points on the z axis.
(3) A point charge q is located above a horizontal, perfect conducting plane. The conductor forms the $x-y$ plane, and the point charge at time t is on the $+z$ axis at the location

$$
z=a+b \cos (\omega t) .
$$

Assume a and b are both $\ll c / \omega$.
a) What is the angular distribution of the emitted radiation?
b) What is the total radiated power?
(4) A hollow rectangular waveguide with perfect conducting walls has inner dimensions a and b. To be specific, assume the walls are on the planes $x=0, x=a, y=0$, and $y=b$, and $a>b$.
a) Find $E_{z}(x, y)$ for TM modes.
b) What is the lowest cut-off frequency for a TM mode?

Exam 2, Problem 1

with $B_{I}=\frac{1}{v_{1}} E_{I}, B_{R}=\frac{1}{v_{1}} E_{R}, B_{T}=\frac{1}{v_{2}} E_{T}$ and $\mu_{1}^{2} \mu_{2} \Rightarrow$

$$
\begin{aligned}
& \text { (2) } E_{I}-E_{R}=\frac{v_{1}}{v_{2}} E_{T} .(1)+(2) \Rightarrow 2 E_{I}=\left(1+\frac{v_{1}}{v_{2}}\right) E_{T} \Rightarrow \\
& \left.\left.E_{T}=\frac{2 v_{2}}{v_{1}+\sigma_{2}} E_{I}=\frac{2 \frac{\varnothing}{n_{2}}}{\frac{q}{n_{1}}+\frac{\alpha}{n_{2}}} E_{I} \right\rvert\,=\frac{2 n_{1}}{n_{1}+n_{2}} E_{I}\right\} \\
& \text { 垂 } \frac{v_{1}}{v_{2}}(1)-(2) \Rightarrow\left(\frac{v_{1}}{v_{2}}-1\right) E_{I}+\left(\frac{v_{1}}{v_{2}}+1\right) E_{R}=0 \Rightarrow \\
& \left.E_{R}=\frac{v_{2}-v_{1}}{v_{2}+v_{1}} E_{I}=\frac{\frac{\alpha}{n_{2}}-\frac{\ell}{n_{1}}}{\frac{q}{n_{2}}+\frac{\varepsilon}{n_{1}}} E_{I}=\frac{n_{1}-n_{2}}{n_{1}+n_{2}} E_{I}\right\} \\
& R=\left(\left.\frac{E_{R}}{E_{1}}\right|^{2}=\frac{\left(n_{1}-n_{2}\right)^{2}}{\left(n_{1}+n_{2}\right)^{2}}\right)^{n_{2}+n_{1}} \quad T=\frac{\varepsilon_{2} \omega_{2}}{\varepsilon_{1} T_{1}}\left(\left.\frac{E_{I}}{E_{I}}\right|^{2}=n_{2} n_{1} \frac{\alpha}{n_{2}} \frac{\varepsilon}{n_{2}} \frac{4}{k_{4}} \frac{4 n_{1}^{2}}{\left(n+n_{2}\right)^{2}}\right. \\
& =\frac{m_{2}}{n_{1}} \frac{4_{1} 1_{1}^{k}}{\left(n_{1}+w_{2}\right)^{2}} \Rightarrow T=\frac{4_{n_{1}} w_{2}}{\left(n_{1}+m_{2}\right)^{2}}
\end{aligned}
$$

(b) $T=R$ requires $\left(n_{1}-n_{2}\right)^{2}=4 n_{1} n_{2} \Rightarrow n_{1}^{2}-2 n_{2} n_{2}+n_{2}^{2}=4 n_{1} n_{2} \Rightarrow$

$$
\begin{aligned}
& n_{2}^{2}-6 n_{1} n_{2}+n_{1}^{2}=0 \Rightarrow n_{2}=\frac{6 n_{1} \pm \sqrt{36 n_{1}^{2}-4 n_{1}^{2}}}{2}=(3 \pm \sqrt{8}) n_{1} \\
& \Rightarrow n_{2}=(3 \pm \sqrt{8}) n_{1}
\end{aligned}
$$

Exam 2, Problem 2

$$
\begin{aligned}
& V(\vec{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q c}{(n c-\vec{n} \cdot \vec{v})_{\text {ret }}} \\
& \vec{A}(\vec{r}, t)=\mu_{0} \frac{q c \overrightarrow{u_{\text {ret }}}}{4 \pi}=\frac{\vec{u}_{\text {ret }}}{c^{2}} V(\vec{r}, t)
\end{aligned}
$$

In the present case, we have $\vec{r} \perp \vec{v}$, so the $\vec{n} \vec{v}$ terms $\rightarrow 0$.
$\underset{R}{z} \quad\left(\vec{r} \mid=\sqrt{z^{2}+a^{2}}\right.$ is constant, $A O$:

$$
\begin{aligned}
& V(\vec{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q \alpha}{\sqrt{z^{2}+a^{2}} \phi}=\frac{q}{4 \pi \varepsilon_{0}} \frac{1}{\sqrt{z^{2}+a^{2}}} \text {, ind of } t \text {. } \\
& \vec{A}=\frac{\mu_{0}}{4 \pi} \frac{q \alpha \vec{v}_{\text {ret }}}{\lambda q}=\frac{\mu_{0} q}{4 \pi} \frac{1}{\sqrt{z^{2}+a^{2}}} \vec{v}_{\text {ret }} \text {, } \\
& t_{r}=t-\frac{\Lambda}{c}=t-\frac{\sqrt{z^{2}+a^{2}}}{c} \Rightarrow \\
& \vec{v}_{\text {ret }}=-a \omega \sin \left(\omega t_{r}\right) \hat{x}+a \omega \cos \left(\omega t_{r}\right) \hat{y} \text {, and: } \\
& \vec{A}=\frac{\mu_{0} q \omega}{4 \pi} \frac{a}{\sqrt{z^{2}+a^{2}}}\left\{-\sin \left(\omega\left(t-\frac{\sqrt{z^{2}+a^{2}}}{c}\right)\right) \hat{x}+\cos \left(\omega\left(t-\frac{\sqrt{z^{2}+a^{2}}}{c}\right)\right) \hat{y}\right\}
\end{aligned}
$$

Exam 2, Problem 3
(a) If produces an image charge - of at $-z$. at b ait both $<\frac{c}{\omega}$, so we can inure retardation in the formation of the image charge
Thus, $\vec{p}(t)=\int \vec{r}^{\prime} p\left(\vec{r}^{\prime}\right) d v^{\prime}=2 q(a+b \cos (\omega t)) \hat{z} \Rightarrow$

$$
\begin{aligned}
& \ddot{\vec{p}}=-2 q b \omega^{2} \cos (\omega t) \hat{z} \text { and }\left\langle\ddot{\vec{p}}^{2}\right\rangle={ }^{2} 4 q^{2} b^{2} \omega^{4}\left(\frac{1}{2}\right) \\
& \vec{I}=\langle\vec{s}\rangle=\frac{\mu_{0}}{16 \pi^{2} c}\left\langle\dot{p}^{2}\right\rangle\left(\frac{\sin ^{2} \theta}{r^{2}}\right) \hat{r}=\frac{\mu_{0} q^{2} b^{2} \omega^{4}}{8 \pi^{2} c}\left(\frac{\sin ^{2} \theta}{r^{2}}\right) \hat{r} \Rightarrow \\
& \frac{d F}{d \Omega}=r^{2} \vec{I} \cdot \hat{r}\left(\begin{array}{c}
\frac{\mu_{0} q^{2} b^{2} \omega^{4}}{8 \pi^{2} c} \sin ^{2} \theta \\
\left.0 \quad \text { for } 0 \leq \theta<\frac{\pi}{2}\right) \\
0 \quad \text { for } \frac{\pi}{2}<\theta \text { (no radiation } \\
\text { below the plane }
\end{array}\right.
\end{aligned}
$$

(b) $P=\int \frac{d P}{d \Omega} Q \Omega=\frac{\mu_{0} q^{2} b^{2} \omega^{4}}{8 \pi^{2} c} \int_{0}^{2 \pi} d \varphi \int_{0}^{\frac{\pi}{2}} \sin ^{2} \theta d(\cos \theta)$
$2 \pi \quad \int^{\prime \prime}\left(1-x^{2}\right) d x=\frac{2}{3}$

$$
\Rightarrow P=\frac{\mu_{0} q^{2} b^{2} \omega^{4}}{8 \pi^{4} c}(2 \pi \pi)\left(\frac{z}{3}\right)=\frac{\mu_{0} q^{2} b^{2} w^{2}}{6 \pi c}
$$

Exam 2, Problem 4
(a) E_{z} must obey $\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\left(\frac{\infty}{c^{2}}\right)-b^{2}\right] E_{z}=0$, while $B_{z}=0$. Separation of variables gives

$$
E_{z}=\left(A \cos \left(k_{x} x\right)+B \sin \left(k_{x} x\right)\right)\left(C \cos \left(k_{y}, y\right)+D \sin \left(k_{y}, y\right)\right) .
$$

We must have $E_{z}(x=0)=E_{2}(x=a)=E_{2}(y=0)=E_{2}(y=b)=0$ (continuity of E_{11} at thenarfores) $\Rightarrow A_{+} C=0, k_{x}=\frac{m \pi}{a}, l_{c} z \frac{n \pi}{b}$ $\Rightarrow E_{z}=E_{0} \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y y}{b}\right)$, with man positive integers.
Doeathis obey our b. cion $E_{x}, E_{y}, B_{x}, B_{y}$?

$$
E_{6}=\frac{i k}{\left(\frac{\omega}{c}\right)^{2}-k^{2}} \frac{\partial E_{z}}{\partial x} \propto \cos \left(\frac{n \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) .
$$

This is ger at $y=0$ and $y=b$, as th must be. $B_{y} \propto E_{x}$, or is in so yer at $y=0$ and $y=b$, as it must be.

$$
E_{y}=\frac{i h_{2}}{\left(\frac{\omega}{c}\right)^{2}-h^{2}} \frac{\partial E_{z}}{\partial y} \propto \sin \left(\frac{m \pi x}{a}\right) \cos \left(\frac{n \pi y}{b}\right) \text {, and } B_{x} \alpha E_{y} \text {. }
$$

Again, $E_{y}+B_{x}$ are nero at $x=0$ and $x=a$, as the yous ot be.
Works! Above is the mot gen aral TM mode.
(b) For lowest at-off frequency, $k=0$ and $\omega_{n n}$ is a minimum. Clearly, $m=n=1$, and $\omega_{11}=c \pi \sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}}$

