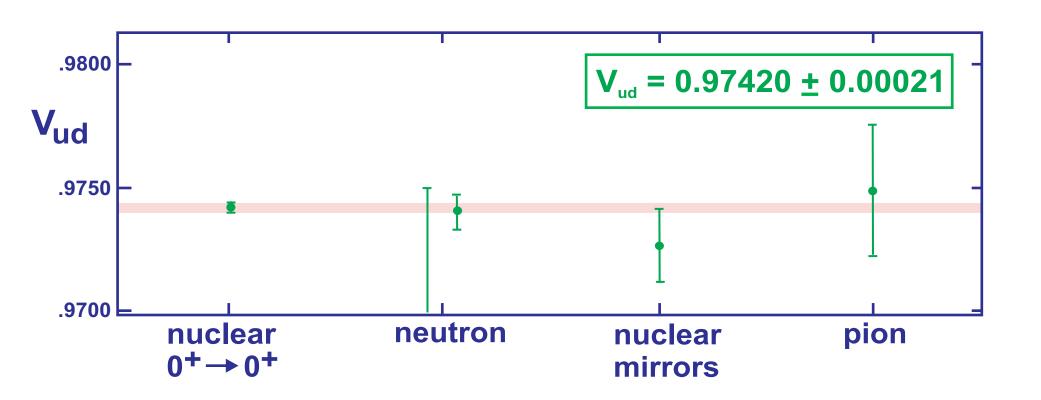


CURRENT STATUS OF Vud



BASIC WEAK-DECAY EQUATION

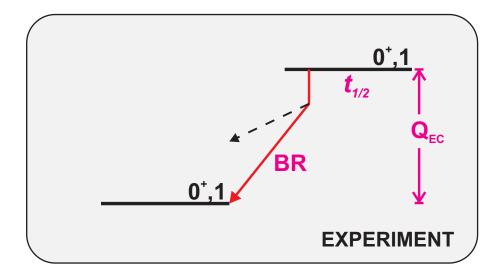
$$ft = \frac{K}{G_v^2 < \tau >^2}$$

f = statistical rate function: $f(Z, Q_{EC})$

 $t = partial half-life: f(t_{1/2}, BR)$

 G_v = vector coupling constant

 $<\tau>$ = Fermi matrix element



BASIC WEAK-DECAY EQUATION

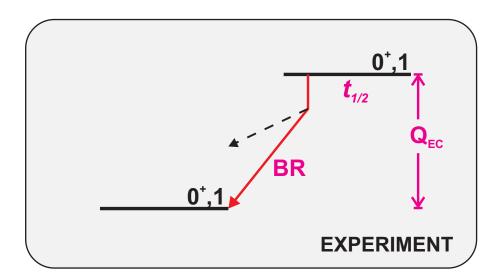
$$ft = \frac{K}{G_V^2 < \tau >^2}$$

f = statistical rate function: $f(Z, Q_{EC})$

 $t = partial half-life: f(t_{1/2}, BR)$

 G_v = vector coupling constant

 $<\tau>$ = Fermi matrix element



INCLUDING RADIATIVE AND ISOSPIN-SYMMETRY-BREAKING CORRECTIONS

$$\mathcal{T}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

BASIC WEAK-DECAY EQUATION

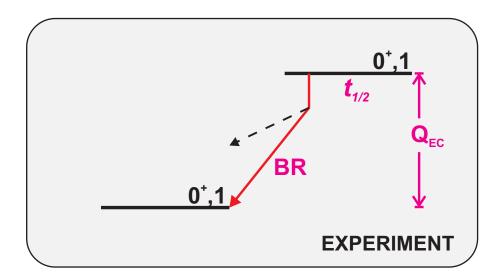
$$ft = \frac{K}{G_v^2 < \tau >^2}$$

f = statistical rate function: $f(Z, Q_{EC})$

 $t = partial half-life: f(t_{1/2}, BR)$

 G_v = vector coupling constant

 $<\tau>$ = Fermi matrix element



INCLUDING RADIATIVE AND ISOSPIN-SYMMETRY-BREAKING CORRECTIONS

$$f(Z, Q_{EC})$$
 $f(\text{nuclear structure})$ $f(\text{interaction})$ $f(\text{interaction})$

BASIC WEAK-DECAY EQUATION

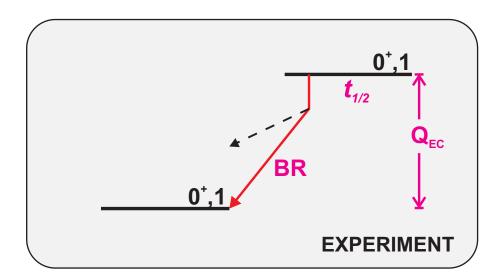
$$ft = \frac{K}{G_V^2 < \tau >^2}$$

f = statistical rate function: $f(Z, Q_{EC})$

 $t = partial half-life: f(t_{1/2}, BR)$

G_v = vector coupling constant

 $<\tau>$ = Fermi matrix element



INCLUDING RADIATIVE AND ISOSPIN-SYMMETRY-BREAKING CORRECTIONS

$$f(Z, Q_{EC})$$
 $f(\text{nuclear structure})$ $f(\text{interaction})$ $f(\text{interaction})$

THEORETICAL UNCERTAINTIES

0.05 - 0.10%

THE PATH TO V_{ud}

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + \Delta_R)$

$$\mathcal{I}t = ft (1 + \delta_{R}^{2})[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

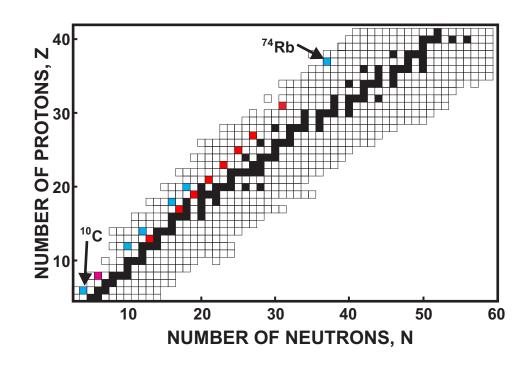
FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + \Delta_R)$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC) Validate the correction terms

$$\mathcal{T}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$



THE PATH TO V_{ud}

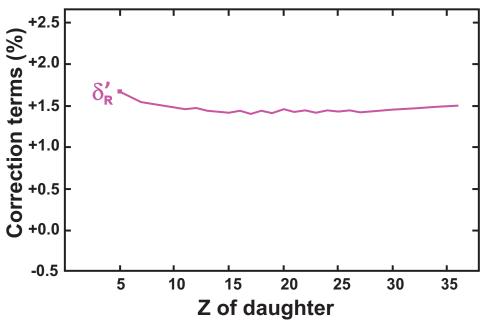
FROM A SINGLE TRANSITION

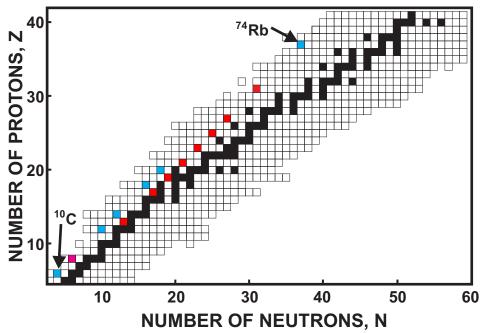
Experimentally determine $G_v^2(1 + \Delta_R)$

$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{c} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)





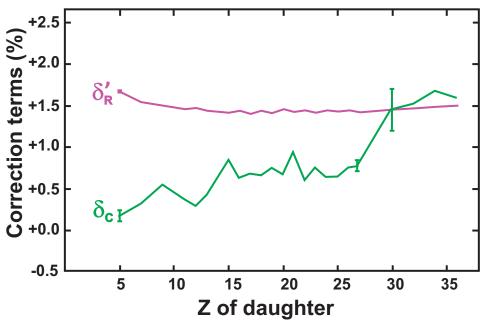
FROM A SINGLE TRANSITION

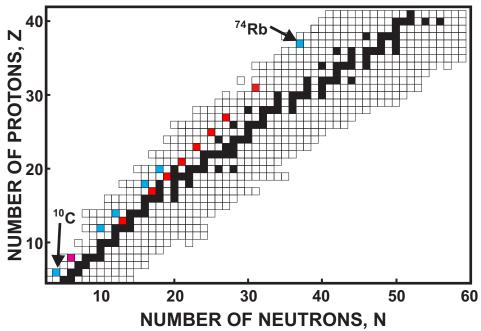
Experimentally determine $G_v^2(1 + \Delta_R)$

$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)





THE PATH TO V_{ud}

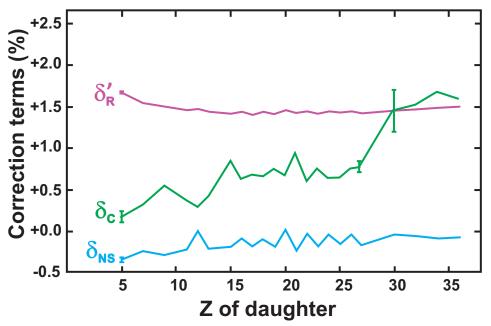
FROM A SINGLE TRANSITION

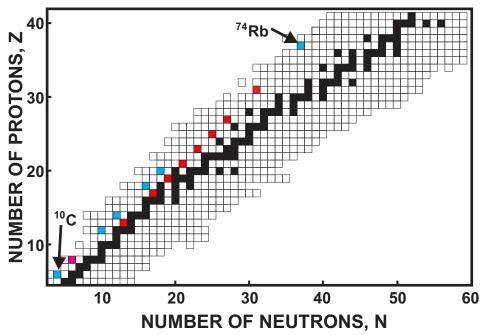
Experimentally determine $G_v^2(1 + \Delta_R)$

$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)





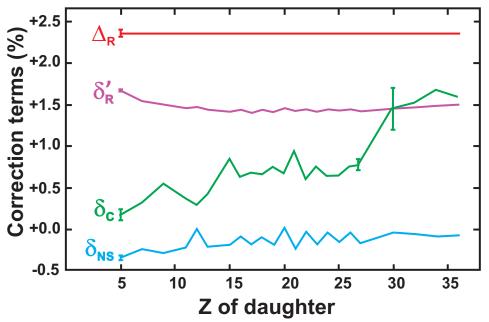
FROM A SINGLE TRANSITION

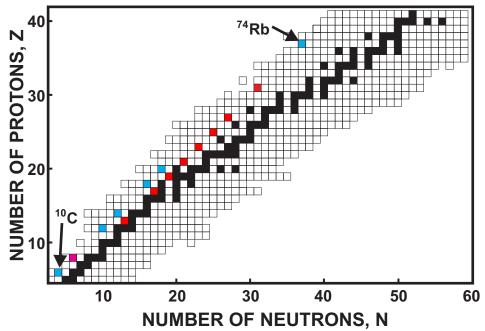
Experimentally determine $G_v^2(1 + \Delta_R)$

$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)





FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + \Delta_R)$

$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC) Validate the correction terms

7t values constant

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + \Delta_R)$

$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC) Validate the correction terms

Test for presence of a Scalar current

7t values constant

THE PATH TO V_{ud}

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + \Delta_R)$

$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

FROM MANY TRANSITIONS

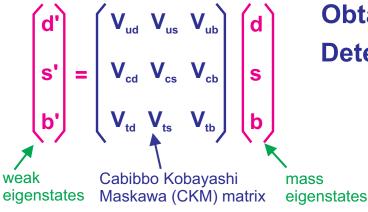
Test Conservation of the Vector current (CVC)

Validate the correction terms

Test for presence of a Scalar current

7t values constant

WITH CVC VERIFIED



Obtain precise value of $G_v^2(1 + \Delta_R)$ Determine V_{ud}^2

$$V_{ud}^2 = G_V^2/G_{\mu}^2$$

THE PATH TO V_{ud}

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + \Delta_R)$

$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

FROM MANY TRANSITIONS

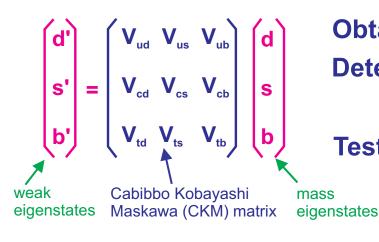
Test Conservation of the Vector current (CVC)

Validate the correction terms

Test for presence of a Scalar current

7t values constant

WITH CVC VERIFIED



Obtain precise value of $G_v^2(1 + \Delta_R)$ Determine V_{ud}^2

$$V_{ud}^2 = G_V^2/G_{\mu}^2$$

Test CKM unitarity

$$V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1$$

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + \Delta_R)$

$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

Validate the correction terms

Test for presence of a Scalar current

7t values constant

WITH CVC VERIFIED

Determin SIBLE IF PRIOR

ONLY POINS SATISFIED

ONLY POINS SATISFIED

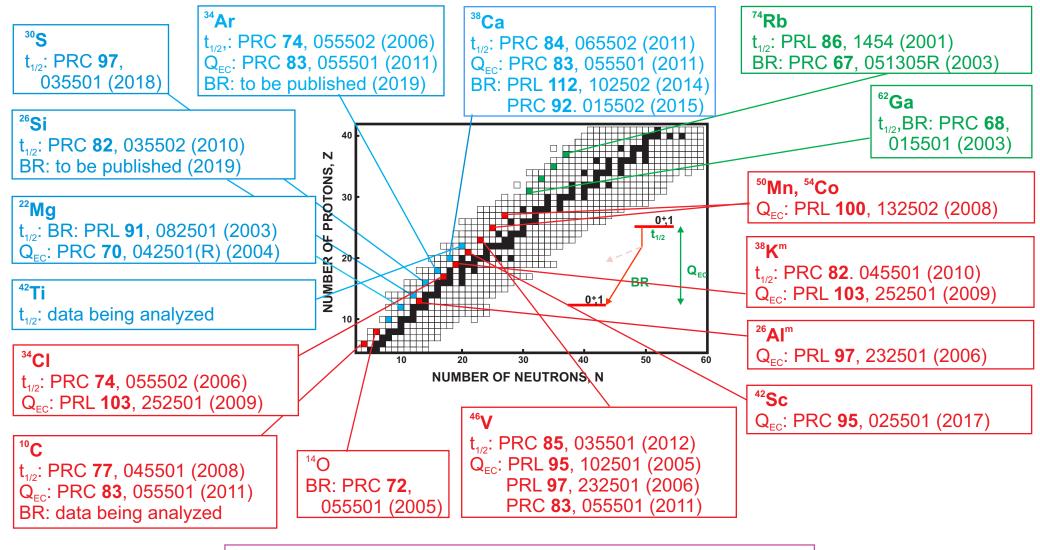
CONDITIONS ATISFIED

anitarita

$$V_{ud}^2 = G_v^2/G_{\mu}^2$$

$$V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1$$

SUPERALLOWED-DECAY WORK INVOLVING TAMU GROUP



Theory/Reviews

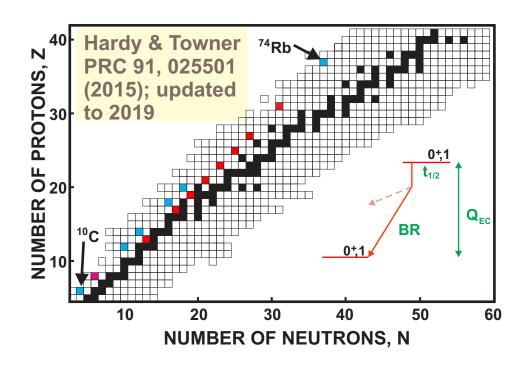
 $(\delta_{\text{c}} - \delta_{\text{NS}})$ calculations: PRC **77**, 025501 (2008) Recent critical survey: PRC **91**, 025501 (2015)

Measurement & interpretation of 0⁺ → 0⁺: J. Phys G 41, 114004 (2014)

Numerous reviews of CVC and CKM-unitarity tests

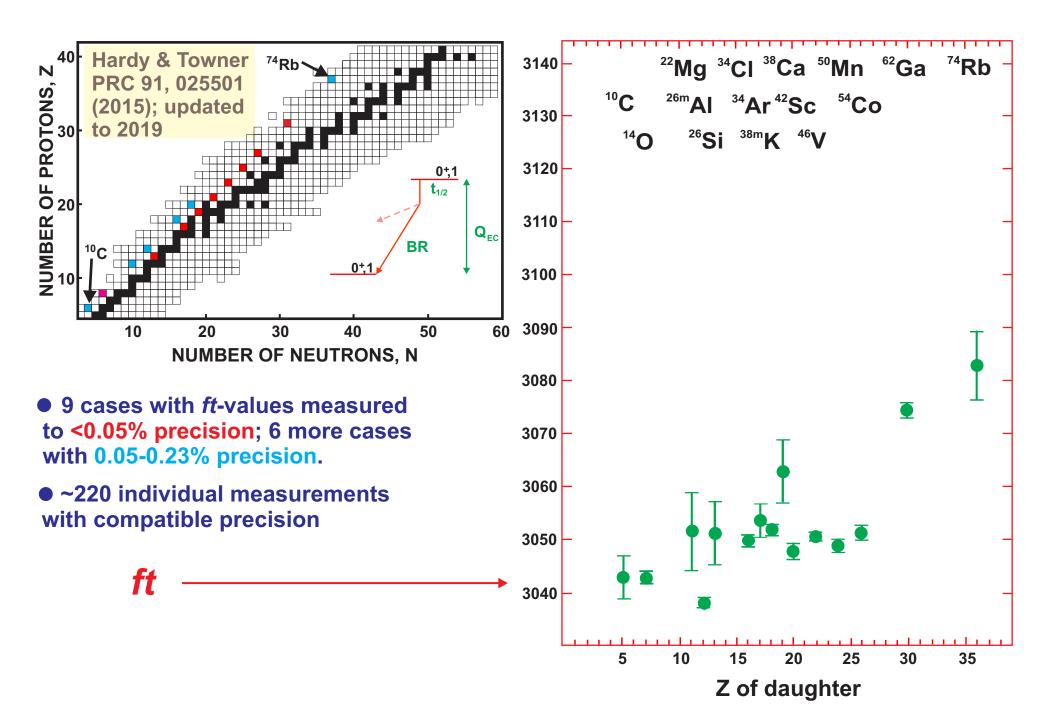
Comparative tests of δ_c calculations: PRC **82**, 065501 (2010)

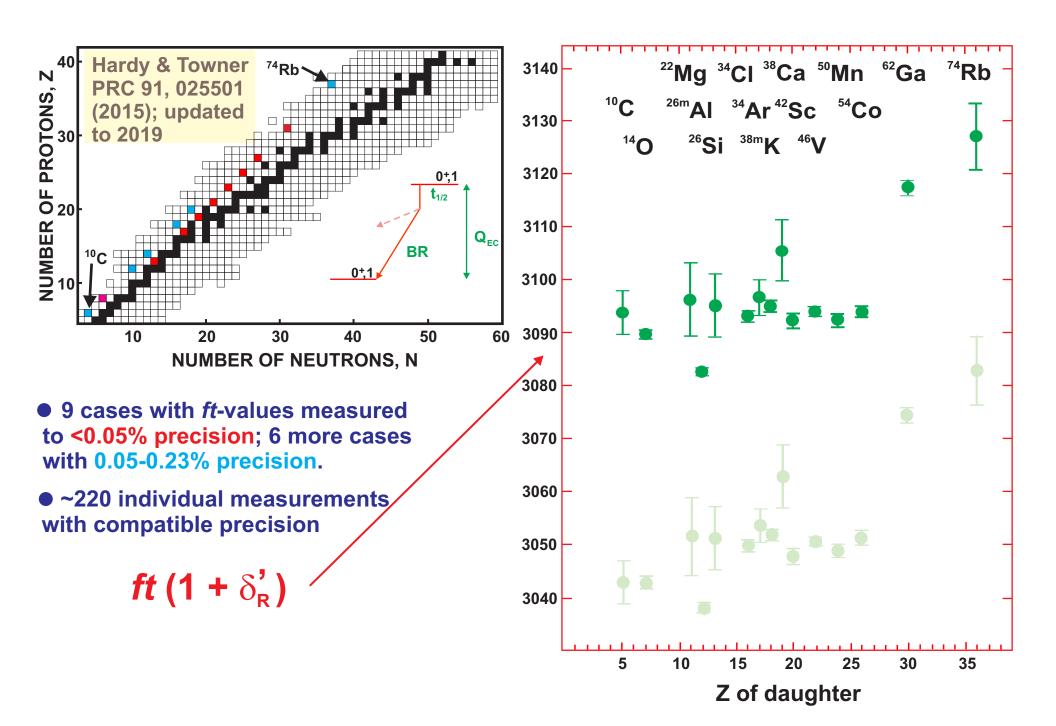
Parameterization of f function: PRC 91, 015501 (2015)

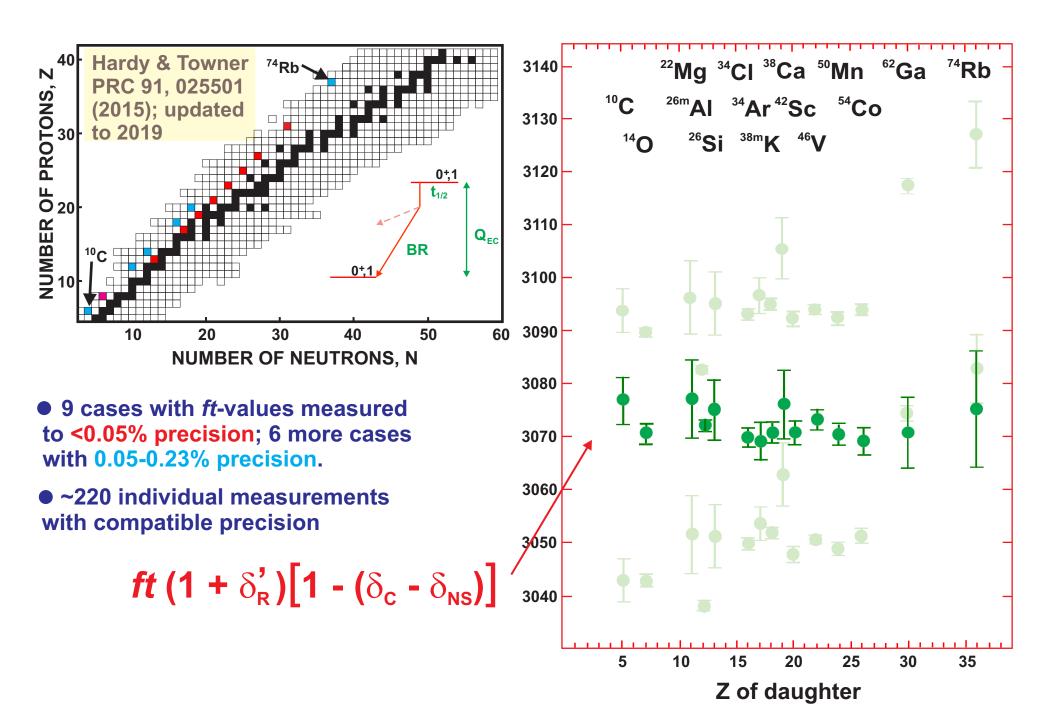


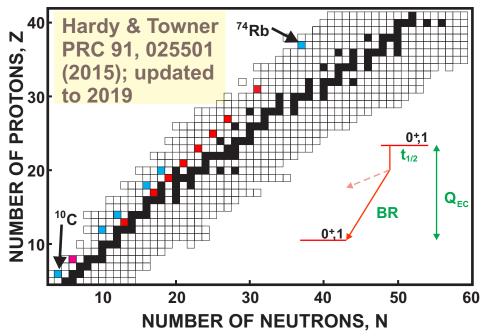
- 9 cases with *ft*-values measured to <0.05% precision; 6 more cases with 0.05-0.23% precision.
- **◆ ~220** individual measurements with compatible precision

WORLD DATA FOR 0⁺→0⁺ DECAY, 2019





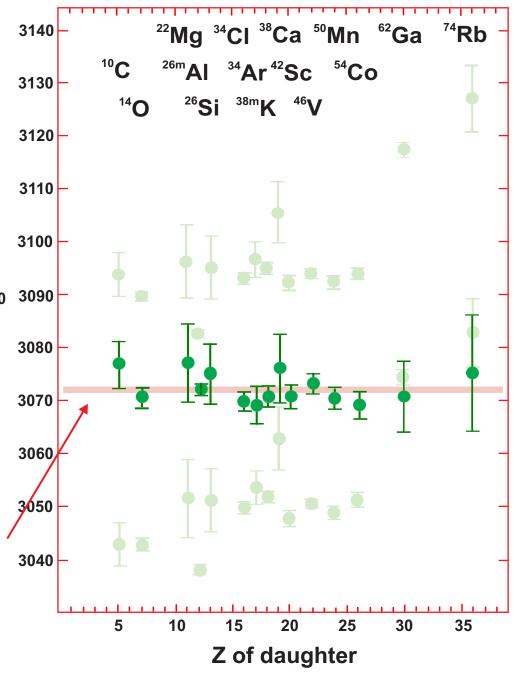


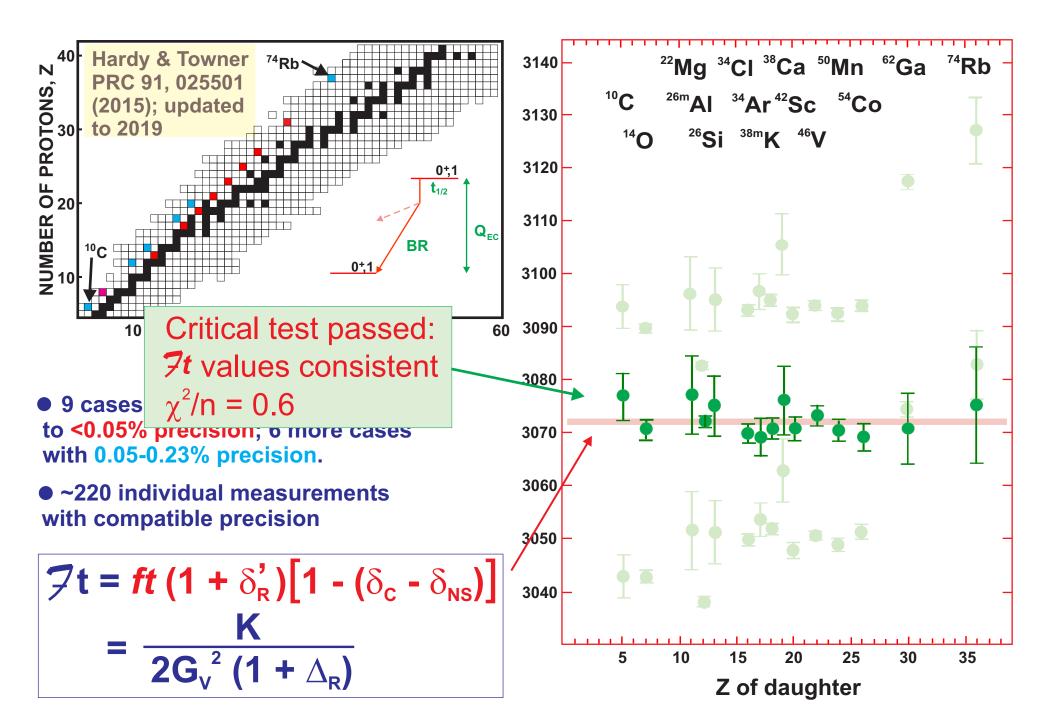


- 9 cases with *ft*-values measured to <0.05% precision; 6 more cases with 0.05-0.23% precision.
- ~220 individual measurements with compatible precision

$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})]$$

$$= \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$





$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

$$\mathcal{T}t = ft (1 + \frac{\delta'_{R}}{\epsilon})[1 - (\delta_{c} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

1. Radiative corrections

$$δ_R^* = \frac{\alpha}{2\pi} [g(E_m) + \delta_2 + \delta_3 + ...]$$
 One-photon brem. + low-energy γW-box [Serlin]

$$\mathcal{T}t = ft (1 + \frac{\delta'_{R}}{\delta_{R}})[1 - (\delta_{c} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

1. Radiative corrections

$$\delta_{R}' = \frac{\alpha}{2\pi} [g(E_m) + \delta_2 + \delta_3 + \dots]$$
 One-photon brem. + low-energy γW -box [Serlin]

$$\Delta_{R} = \frac{\alpha}{2\pi} \left[4 \ln(m_z/m_p) + \ln(m_p/m_A) + 2C_{Born} + \dots \right] \quad \begin{array}{l} \text{High-energy } \gamma W \text{-box} \\ + ZW \text{-box} \end{array} \quad \begin{array}{l} \text{[Marciano} \\ \text{\& Serlin]} \end{array}$$

$$\mathcal{T}t = ft (1 + \delta_{R}')[1 - (\delta_{c} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

1. Radiative corrections

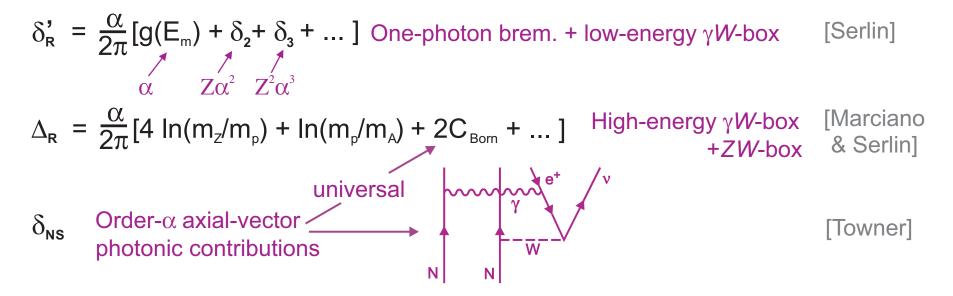
$$\delta_{\mathsf{R}}' = \frac{\alpha}{2\pi} [\mathsf{g}(\mathsf{E}_{\mathsf{m}}) + \delta_{\mathsf{2}} + \delta_{\mathsf{3}} + \dots] \text{ One-photon brem. + low-energy } \gamma \textit{W-box} \qquad [Serlin]$$

$$\Delta_{\mathsf{R}} = \frac{\alpha}{2\pi} [\mathsf{4} \ln(\mathsf{m}_{\mathsf{Z}}/\mathsf{m}_{\mathsf{p}}) + \ln(\mathsf{m}_{\mathsf{p}}/\mathsf{m}_{\mathsf{A}}) + 2\mathsf{C}_{\mathsf{Borm}} + \dots] \qquad \text{High-energy } \gamma \textit{W-box} \qquad [Marciano & Serlin]$$

$$\delta_{\mathsf{NS}} \quad \text{Order-} \alpha \text{ axial-vector photonic contributions} \qquad \mathsf{N} \quad \mathsf{N} \quad$$

$$\mathcal{I}t = ft (1 + \delta_{R}^{\prime})[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

1. Radiative corrections



2. Isospin symmetry-breaking corrections

 δ_{c} Charge-dependent mismatch between parent and daughter analog states (members of the same isospin triplet).

[Towner & Hardy]

$$\mathcal{T}t = ft (1 + \delta_{R}^{\prime})[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

1. Radiative corrections

$$\delta_{R}' = \frac{\alpha}{2\pi} [g(E_m) + \delta_2 + \delta_3 + \dots]$$
 One-photon brem. + low-energy γW -box [Serlin]

$$\Delta_{R} = \frac{\alpha}{2\pi} \left[4 \ln(m_z/m_p) + \ln(m_p/m_A) + 2C_{Born} + \dots \right] \quad \begin{array}{c} \text{High-energy } \gamma W \text{-box} \\ + ZW \text{-box} \end{array} \quad \begin{array}{c} \left[\text{Marciano} \\ \text{\& Serlin} \right] \end{array}$$

Universal

Order-α axial-vector photonic contributions

[Towner]

2. Isospin symmetry-breaking corrections

 δ_{c} Charge-dependent mismatch between parent and daughter analog states (members of the same isospin triplet).

[Towner & Hardy]

Dependent

on nuclear structure

 $\delta_{ extsf{c}_1}$

 $\delta_{\scriptscriptstyle
m C2}$

Difference in configuration mixing between parent and daughter.

- Shell-model calculation with wellestablished 2-body matrix elements.
- Charge dependence tuned to known single-particle energies and to measured IMME coefficients.
- Results also adjusted to measured non-analog 0⁺ state energies.

Mismatch in radial wave function between parent and daughter.

- Full-parentage Saxon-Woods wave functions for parent and daughter.
- Matched to known binding energies and charge radii as obtained from electron scattering.
- Core states included based on measured spectroscopic factors.

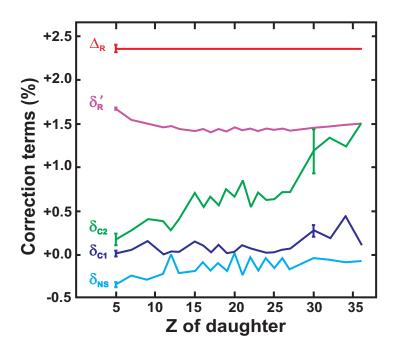
$$\delta_c =$$

 $\delta_{ extsf{c}_1}$

 $\delta_{ extsf{c}_2}$

Difference in configuration mixing between parent and daughter.

- Shell-model calculation with wellestablished 2-body matrix elements.
- Charge dependence tuned to known single-particle energies and to measured IMME coefficients.
- Results also adjusted to measured non-analog 0⁺ state energies.



Mismatch in radial wave function between parent and daughter.

- Full-parentage Saxon-Woods wave functions for parent and daughter.
- Matched to known binding energies and charge radii as obtained from electron scattering.
- Core states included based on measured spectroscopic factors.

$$\delta_c =$$

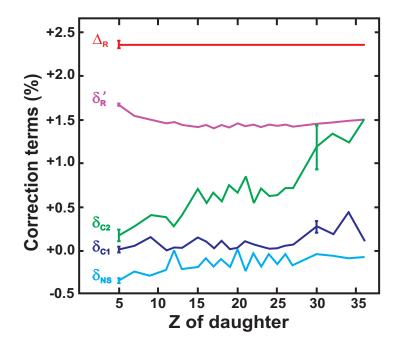
$$\delta_{ extsf{c}'}$$

+

 $\delta_{ extsf{c}_2}$

Difference in configuration mixing between parent and daughter.

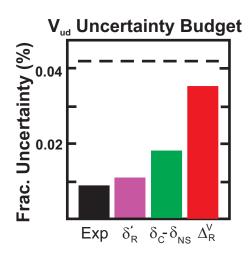
- Shell-model calculation with wellestablished 2-body matrix elements.
- Charge dependence tuned to known single-particle energies and to measured IMME coefficients.
- Results also adjusted to measured non-analog 0⁺ state energies.



Mismatch in radial wave function between parent and daughter.

- Full-parentage Saxon-Woods wave functions for parent and daughter.
- Matched to known binding energies and charge radii as obtained from electron scattering.
- Core states included based on measured spectroscopic factors.

$$\mathcal{T}t = ft (1 + \delta_R')[1 - (\delta_C - \delta_{NS})] = \frac{K}{2G_V^2 (1 + \Delta_R)}$$



$$\delta_c =$$

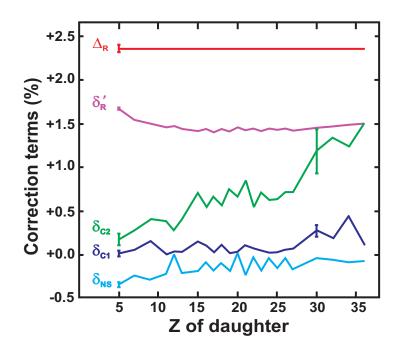
$$\delta_{ extsf{c}'}$$

+

$$\delta_{ extsf{c}_2}$$

Difference in configuration mixing between parent and daughter.

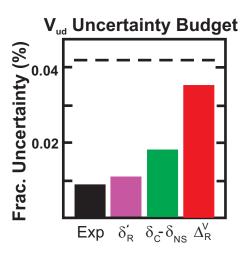
- Shell-model calculation with wellestablished 2-body matrix elements.
- Charge dependence tuned to known single-particle energies and to measured IMME coefficients.
- Results also adjusted to measured non-analog 0⁺ state energies.



Mismatch in radial wave function between parent and daughter.

- Full-parentage Saxon-Woods wave functions for parent and daughter.
- Matched to known binding energies and charge radii as obtained from electron scattering.
- Core states included based on measured spectroscopic factors.

$$\mathcal{T}t = ft (1 + \delta_R')[1 - (\delta_C - \delta_{NS})] = \frac{K}{2G_V^2 (1 + \Delta_R)}$$



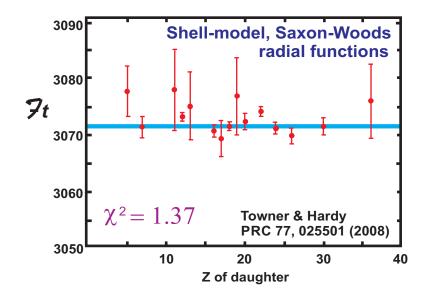
Only δ_c - δ_{NS} can be tested experimentally.

TESTS OF $(\delta_c - \delta_{NS})$ CALCULATIONS

- A. Test how well the transition-to-transition differences in δ_c - δ_{NS} match the data: *i.e.* do they lead to constant $\mathcal{T}t$ values, in agreement with CVC?
- B. Measure the ratio of ft values for mirror $0^+ \rightarrow 0^+$ superallowed transitions and compare the results with calculations.

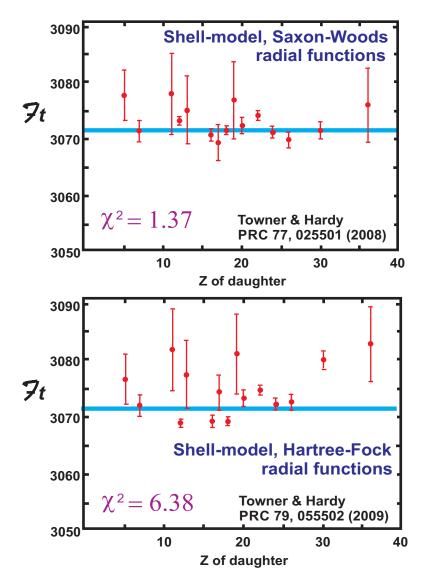
- A. Test how well the transition-to-transition differences in δ_c - δ_{NS} match the data: *i.e.* do they lead to constant $\mathcal{T}t$ values, in agreement with CVC?
- B. Measure the ratio of ft values for mirror $0^+ \rightarrow 0^+$ superallowed transitions and compare the results with calculations.

Model	χ^2/N	CL(%)	
SM-SW	1.37	17	



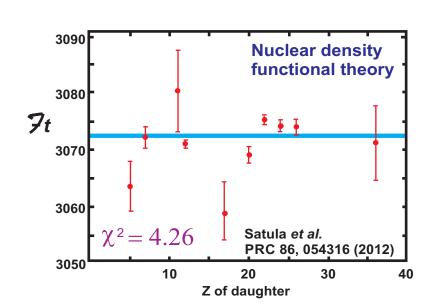
- A. Test how well the transition-to-transition differences in δ_c - δ_{NS} match the data: *i.e.* do they lead to constant $\mathcal{T}t$ values, in agreement with CVC?
- B. Measure the ratio of ft values for mirror $0^+ \rightarrow 0^+$ superallowed transitions and compare the results with calculations.

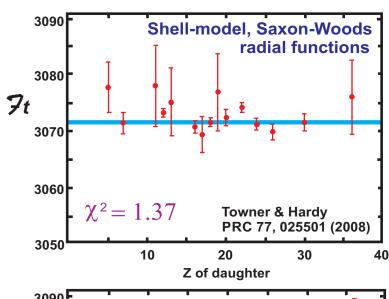
Model	χ^2/N	CL(%)
SM-SW	1.37	17
SM-HF	6.38	0

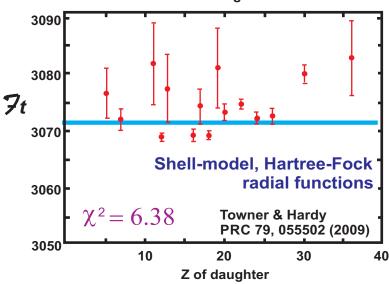


- A. Test how well the transition-to-transition differences in δ_c - δ_{NS} match the data: *i.e.* do they lead to constant $\mathcal{T}t$ values, in agreement with CVC?
- B. Measure the ratio of ft values for mirror $0^+ \rightarrow 0^+$ superallowed transitions and compare the results with calculations.

Model	χ^2/N	CL(%)
SM-SW	1.37	17
SM-HF	6.38	0
DFT	4.26	0

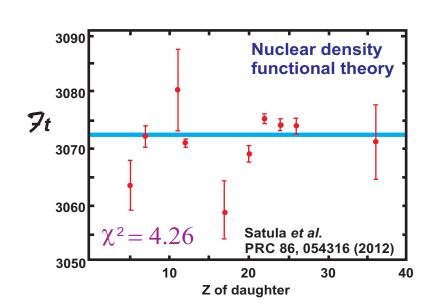


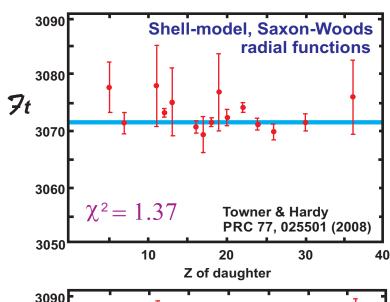




- A. Test how well the transition-to-transition differences in δ_c - δ_{NS} match the data: *i.e.* do they lead to constant $\mathcal{T}t$ values, in agreement with CVC?
- B. Measure the ratio of ft values for mirror $0^+ \rightarrow 0^+$ superallowed transitions and compare the results with calculations.

Model	χ^2/N	CL(%)		
SM-SW	1.37	17		
SM-HF	6.38	0		
DFT	4.26	0		
RHF-RPA	4.91	0		
RH-RPA	3.68	0		



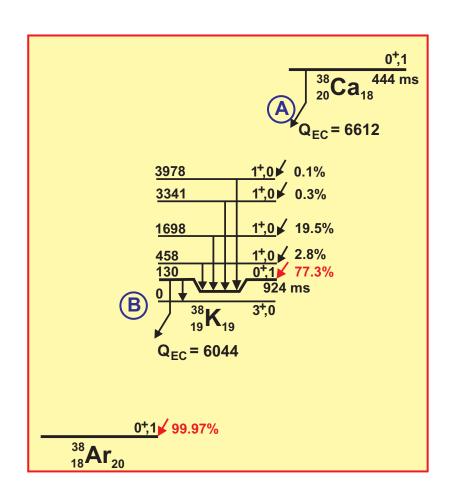




- A. Test how well the transition-to-transition differences in δ_c - δ_{NS} match the data: *i.e.* do they lead to constant $\mathcal{T}t$ values, in agreement with CVC?
- B. Measure the ratio of ft values for mirror $0^+ \rightarrow 0^+$ superallowed transitions and compare the results with calculations.

- A. Test how well the transition-to-transition differences in δ_c - δ_{NS} match the data: *i.e.* do they lead to constant $\mathcal{T}t$ values, in agreement with CVC?
- B. Measure the ratio of ft values for mirror $0^+ \rightarrow 0^+$ superallowed transitions and compare the results with calculations.

$$\mathcal{T}t = ft (1 + \delta_R')[1 - (\delta_C - \delta_{NS})]$$

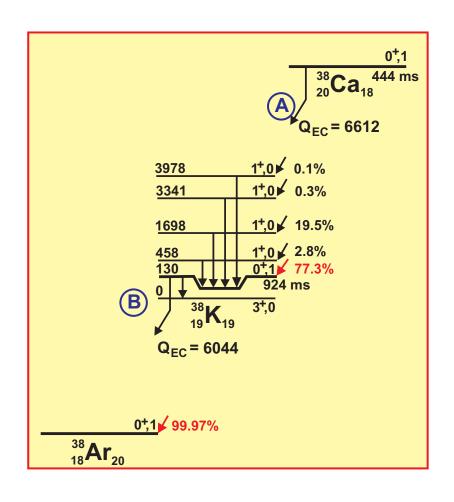


$$\frac{ft_{A}}{ft_{B}} = \frac{(1 + \delta_{R}^{'B})[1 - (\delta_{C}^{B} - \delta_{NS}^{B})]}{(1 + \delta_{R}^{'A})[1 - (\delta_{C}^{A} - \delta_{NS}^{A})]}$$

$$= 1 + (\delta_{R}^{'B} - \delta_{R}^{'A}) + (\delta_{NS}^{B} - \delta_{NS}^{A}) - (\delta_{C}^{B} - \delta_{C}^{A})$$

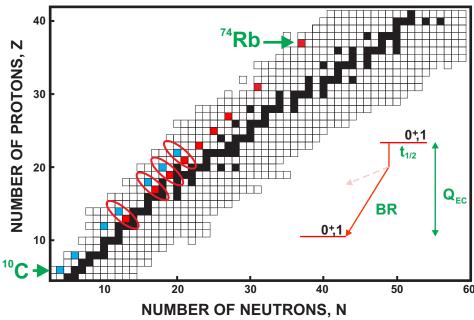
- A. Test how well the transition-to-transition differences in δ_c - δ_{NS} match the data: *i.e.* do they lead to constant $\mathcal{T}t$ values, in agreement with CVC?
- B. Measure the ratio of ft values for mirror $0^+ \rightarrow 0^+$ superallowed transitions and compare the results with calculations.

$$\mathcal{T}t = ft (1 + \delta_R')[1 - (\delta_C - \delta_{NS})]$$



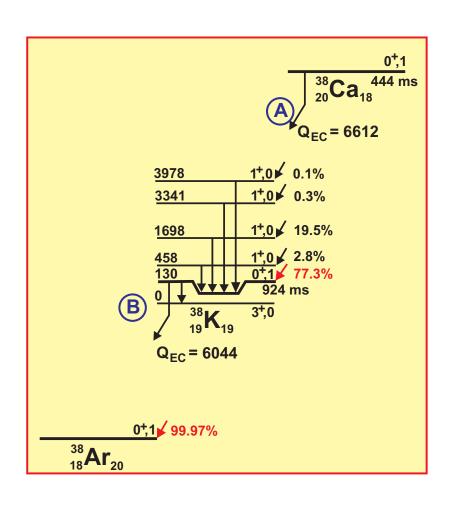
$$\frac{ft_{A}}{ft_{B}} = \frac{(1 + \delta_{R}^{'B})[1 - (\delta_{C}^{B} - \delta_{NS}^{B})]}{(1 + \delta_{R}^{'A})[1 - (\delta_{C}^{A} - \delta_{NS}^{A})]}$$

$$= 1 + (\delta_{R}^{'B} - \delta_{R}^{'A}) + (\delta_{NS}^{B} - \delta_{NS}^{A}) - (\delta_{C}^{B} - \delta_{C}^{A})$$



- A. Test how well the transition-to-transition differences in δ_c - δ_{NS} match the data: *i.e.* do they lead to constant $\mathcal{T}t$ values, in agreement with CVC?
- B. Measure the ratio of ft values for mirror $0^+ \rightarrow 0^+$ superallowed transitions and compare the results with calculations.

$$\mathcal{T}t = ft (1 + \delta_R')[1 - (\delta_C - \delta_{NS})]$$



$$\frac{ft_{A}}{ft_{B}} = \frac{(1 + \delta_{R}^{'B})[1 - (\delta_{C}^{B} - \delta_{NS}^{B})]}{(1 + \delta_{R}^{'A})[1 - (\delta_{C}^{A} - \delta_{NS}^{A})]}$$

$$= 1 + (\delta_{R}^{'B} - \delta_{R}^{'A}) + (\delta_{NS}^{B} - \delta_{NS}^{A}) - (\delta_{C}^{B} - \delta_{C}^{A})$$

$$= 1.006$$
1.004

SW

1.002

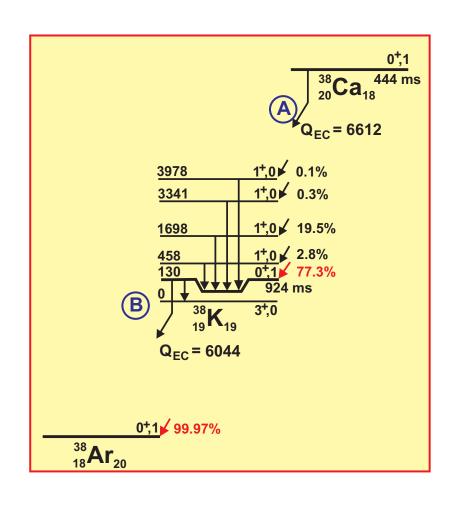
HF

1.000

A of mirror pairs

- A. Test how well the transition-to-transition differences in δ_c - δ_{NS} match the data: *i.e.* do they lead to constant $\mathcal{T}t$ values, in agreement with CVC?
- B. Measure the ratio of ft values for mirror $0^+ \rightarrow 0^+$ superallowed transitions and compare the results with calculations.

$$\mathcal{T}t = ft (1 + \delta_R')[1 - (\delta_C - \delta_{NS})]$$



$$\frac{ft_{A}}{ft_{B}} = \frac{(1 + \delta_{R}^{'B})[1 - (\delta_{C}^{B} - \delta_{NS}^{B})]}{(1 + \delta_{R}^{'A})[1 - (\delta_{C}^{A} - \delta_{NS}^{A})]}$$

$$= 1 + (\delta_{R}^{'B} - \delta_{R}^{'A}) + (\delta_{NS}^{B} - \delta_{NS}^{A}) - (\delta_{C}^{B} - \delta_{C}^{A})$$

$$= 1.006$$

$$1.006$$

$$V = 1.004$$

$$V = 1.002$$

$$V = 1.002$$

$$V = 1.002$$

$$V = 1.004$$

$$V = 1.002$$

$$V = 1.004$$

$$V =$$

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + \Delta_R)$

$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

FROM A SINGLE TRANSITION

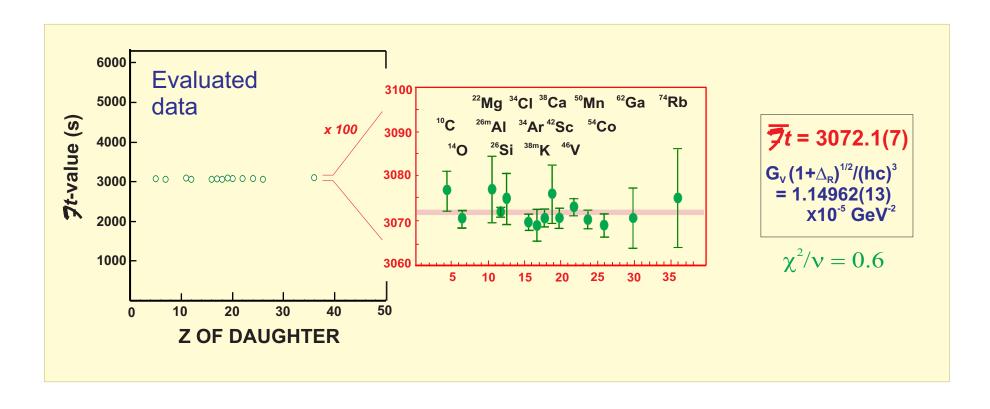
Experimentally determine $G_v^2(1 + \Delta_R)$

$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

 G_v constant to \pm 0.011%



FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + \Delta_R)$

$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC) Validate correction terms G_v constant to $\pm 0.011\%$

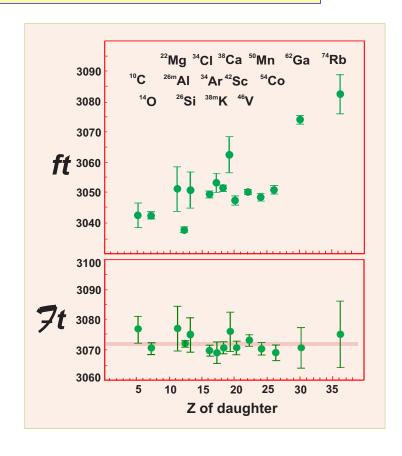
FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + \Delta_R)$

$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC) Validate correction terms G_v constant to \pm 0.011%



FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + \Delta_R)$

$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

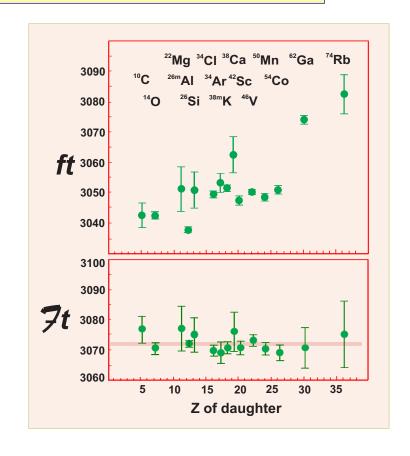
FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

Validate correction terms ✓

Model χ^2/N CL(%) 1.37 17 SM-SW SM-HF 6.38 0 DFT 4.26 0 RHF-RPA 4.91 0 RH-RPA 3.68 0 1.006 HF 1.002 1.000 26 34 38 42 A of mirror pairs

 G_v constant to $\pm 0.011\%$



FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + \Delta_R)$

$$\mathcal{I}t = ft (1 + \delta'_{R})[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

Validate correction terms ✓

Test for Scalar current

 G_v constant to $\pm 0.011\%$

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + \Delta_R)$

$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

FROM MANY TRANSITIONS

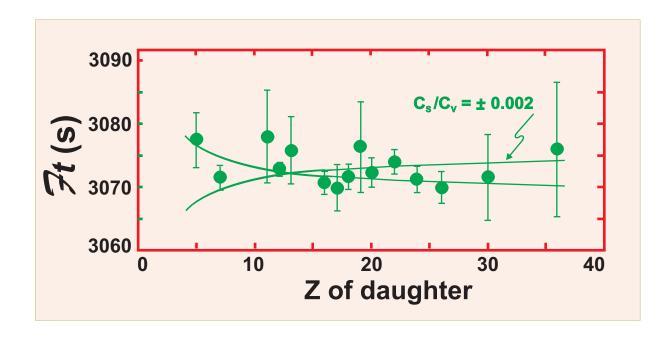
Test Conservation of the Vector current (CVC)

Validate correction terms ✓

Test for Scalar current

G_v constant to ± 0.011%

limit,
$$C_s/C_v = 0.0012 (10) = b/2$$



FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + \Delta_R)$

$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

FROM MANY TRANSITIONS

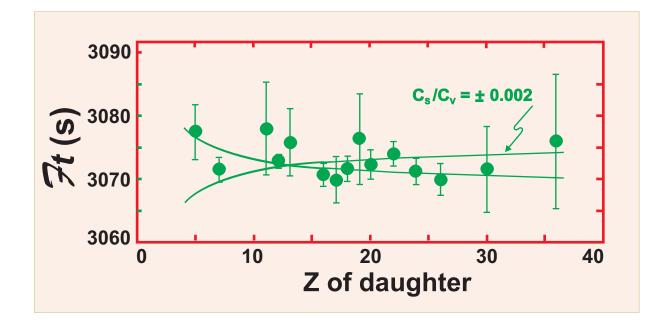
Test Conservation of the Vector current (CVC)

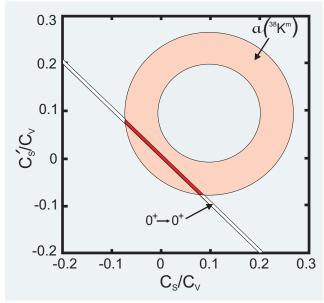
Validate correction terms
✓

Test for Scalar current

 G_v constant to $\pm 0.011\%$

limit,
$$C_s/C_v = 0.0012 (10) = b/2$$





FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + \Delta_R)$

$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

Validate correction terms
✓

Test for Scalar current

 G_v constant to $\pm 0.011\%$

limit, $C_s/C_v = 0.0012 (10) = b/2$

WITH CVC VERIFIED

Obtain precise value of $G_v^2(1 + \Delta_R)$

Determine V_{ud}²

$$V_{ud}^2 = G_V^2/G_{\mu}^2 = 0.94907 \pm 0.00041$$

Cabibbo-Kobayashi-Maskawa matrix

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + \Delta_R)$

$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

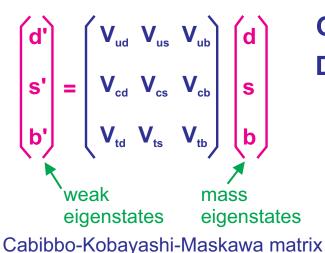
Validate correction terms
✓

Test for Scalar current

G_v constant to ± 0.011%

limit,
$$C_s/C_v = 0.0012$$
 (10) = $b/2$

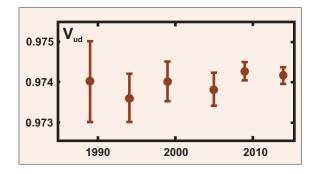
WITH CVC VERIFIED



Obtain precise value of G_v^2 (1 + Δ_R)

Determine V_{ud}²

$$V_{ud}^2 = G_V^2/G_{\mu}^2 = 0.94907 \pm 0.00041$$



FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + \Delta_R)$

$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{2G_{V}^{2} (1 + \Delta_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

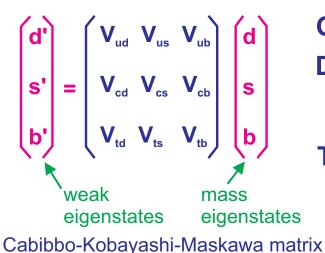
Validate correction terms ✓

Test for Scalar current

G_v constant to ± 0.011%

limit,
$$C_s/C_v = 0.0012 (10) = b/2$$

WITH CVC VERIFIED



Obtain precise value of $G_v^2(1 + \Delta_R)$

Determine V_{ud}²

$$V_{ud}^2 = G_V^2/G_{\mu}^2 = 0.94907 \pm 0.00041$$

Test CKM unitarity

$$V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 0.99939 \pm 0.00047$$

BASIC WEAK-DECAY EQUATION

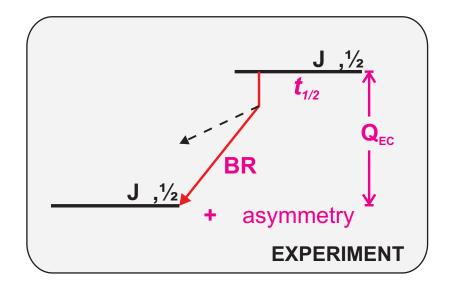
$$ft = \frac{K}{G_V^2 < >^2 + G_A^2 < >^2}$$

f =statistical rate function: $f(Z, Q_{EC})$

 $t = partial half-life: f(t_{1/2}, BR)$

 $G_{V,A}$ = coupling constants

< > = Fermi, Gamow-Teller matrix elements



BASIC WEAK-DECAY EQUATION

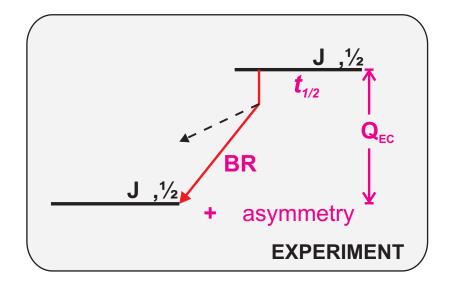
$$ft = \frac{K}{G_V^2 < >^2 + G_A^2 < >^2}$$

f =statistical rate function: $f(Z, Q_{EC})$

 $t = partial half-life: f(t_{1/2}, BR)$

 $G_{V,A}$ = coupling constants

< > = Fermi, Gamow-Teller matrix elements



INCLUDING RADIATIVE CORRECTIONS

$$\mathcal{I}t = ft (1 + \frac{1}{R})[1 - (\frac{1}{C} - \frac{1}{NS})] = \frac{K}{G_V^2 (1 + \frac{1}{R})(1 + \frac{1}{2} < \frac{1}{NS})}$$

$$= G_A/G_V$$

BASIC WEAK-DECAY EQUATION

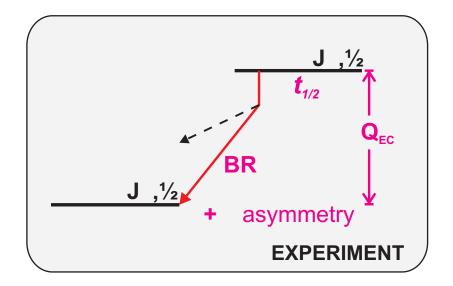
$$ft = \frac{K}{G_V^2 < >^2 + G_A^2 < >^2}$$

f =statistical rate function: $f(Z, Q_{EC})$

 $t = partial half-life: f(t_{1/2}, BR)$

 $G_{V,A}$ = coupling constants

< > = Fermi, Gamow-Teller matrix elements



for example, asymmetry (A)

INCLUDING RADIATIVE CORRECTIONS

$$\mathcal{I}t = ft (1 + \frac{1}{R})[1 - (\frac{1}{C} - \frac{1}{NS})] = \frac{K}{G_V^2 (1 + \frac{1}{R})(1 + \frac{1}{C} + \frac{1}{NS})}$$

$$= \frac{1}{G_V^2 (1 + \frac{1}{R})(1 + \frac{1}{C} + \frac{1}{NS})}$$
Requires additional experiment:

BASIC WEAK-DECAY EQUATION

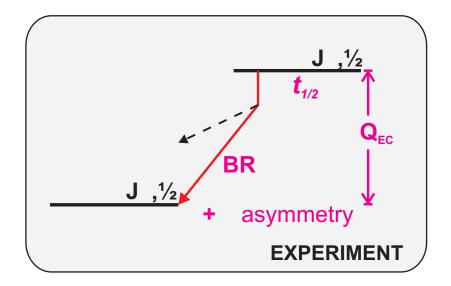
$$ft = \frac{K}{G_V^2 < >^2 + G_A^2 < >^2}$$

f =statistical rate function: $f(Z, Q_{EC})$

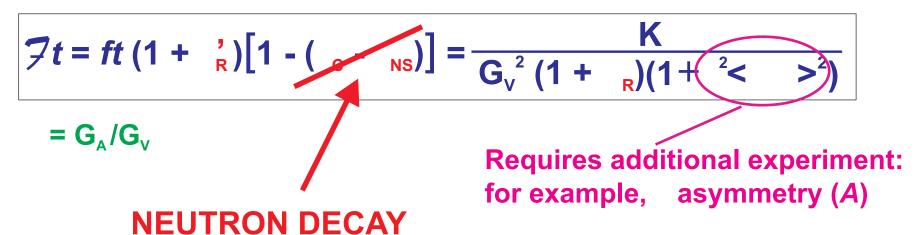
 $t = partial half-life: f(t_{1/2}, BR)$

 $G_{V,A}$ = coupling constants

< > = Fermi, Gamow-Teller matrix elements



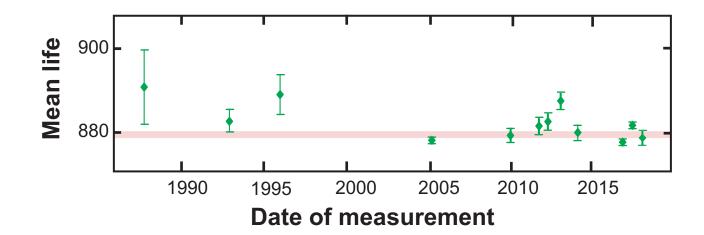
INCLUDING RADIATIVE CORRECTIONS



Mean life:

$$\tau$$
 = 879.7 ± 0.8 s

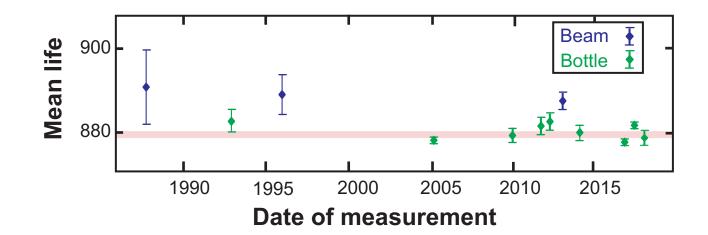
$$\chi^2/N = 3.8$$



Mean life:

$$\tau$$
 = 879.7 ± 0.8 s

$$\chi^2/N = 3.8$$

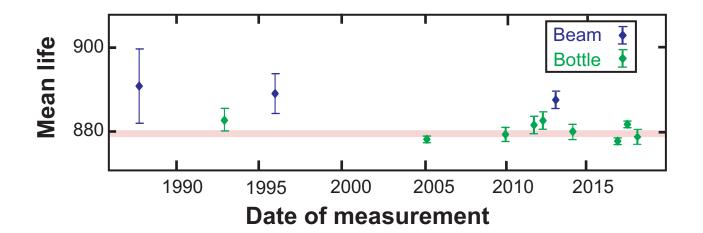


Mean life:

 τ = 879.7 ± 0.8 s

 $\chi^2/N = 3.8$

Beam: 888.1 ± 2.0 s Bottle: 879.4 ± 0.6 s

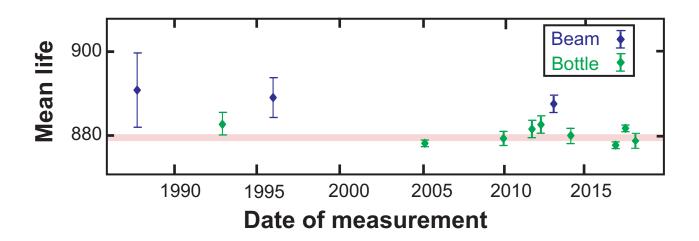


Mean life:

$$\tau$$
 = 879.7 ± 0.8 s

$$\chi^2/N = 3.8$$

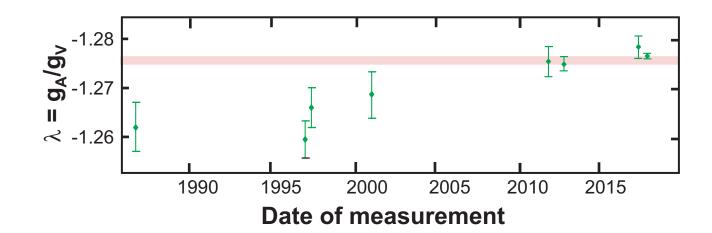
Beam: 888.1 ± 2.0 s Bottle: 879.4 ± 0.6 s



β asymmetry:

$$\lambda = -1.2756 \pm 0.0009$$

$$\chi^2/N = 3.2$$

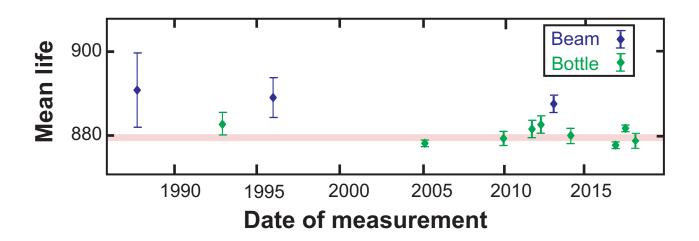


Mean life:

$$\tau = 879.7 \pm 0.8 \text{ s}$$

$$\chi^2/N = 3.8$$

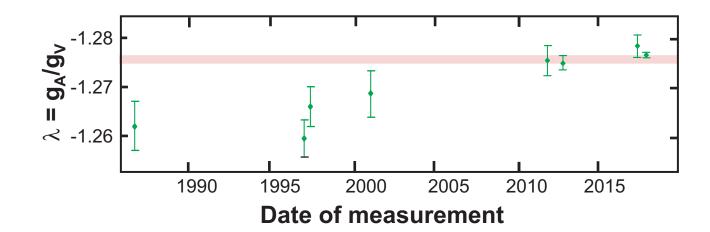
Beam: 888.1 ± 2.0 s Bottle: 879.4 ± 0.6 s



β asymmetry:

$$\lambda$$
 = -1.2756 ± 0.0009

$$\chi^2/N = 3.2$$



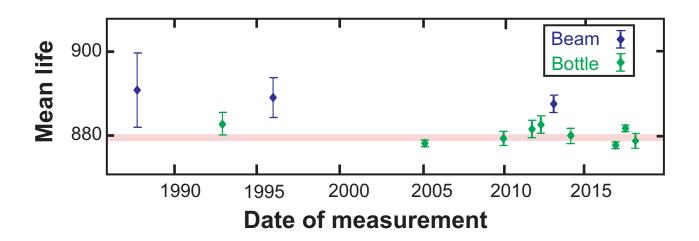
$$V_{ud} = 0.9740 \pm 0.0007$$

Mean life:

$$\tau$$
 = 879.7 ± 0.8 s

$$\chi^2/N = 3.8$$

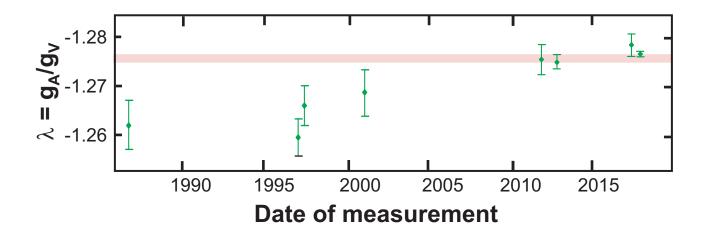
Beam: 888.1 ± 2.0 s Bottle: 879.4 ± 0.6 s



β asymmetry:

$$\lambda$$
 = -1.2756 ± 0.0009

$$\chi^2/N = 3.2$$



$$V_{ud} = 0.9740 \pm 0.0007$$

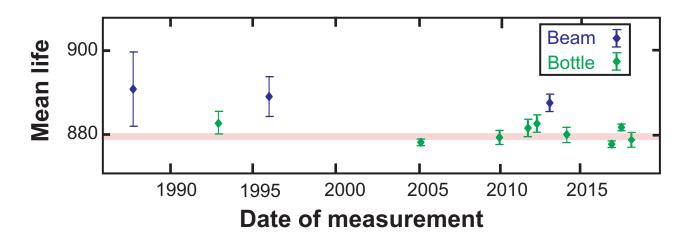
Beam-bottle span $0.9680 \le V_{ud} \le 0.9750$

Mean life:

$$\tau = 879.7 \pm 0.8 \text{ s}$$

$$\chi^2/N = 3.8$$

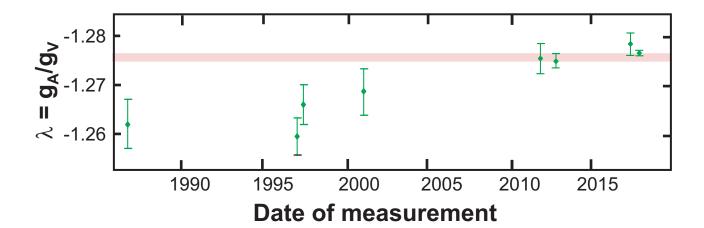
Beam: 888.1 ± 2.0 s Bottle: 879.4 ± 0.6 s



β asymmetry:

$$\lambda = -1.2756 \pm 0.0009$$

$$\chi^2/N = 3.2$$

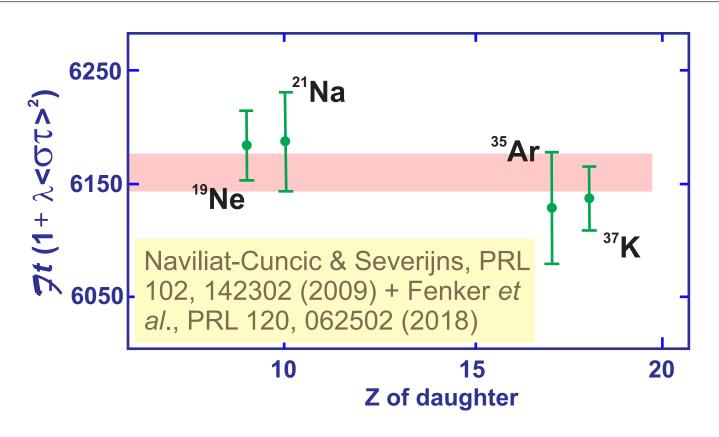


$$V_{ud} = 0.9740 \pm 0.0007$$

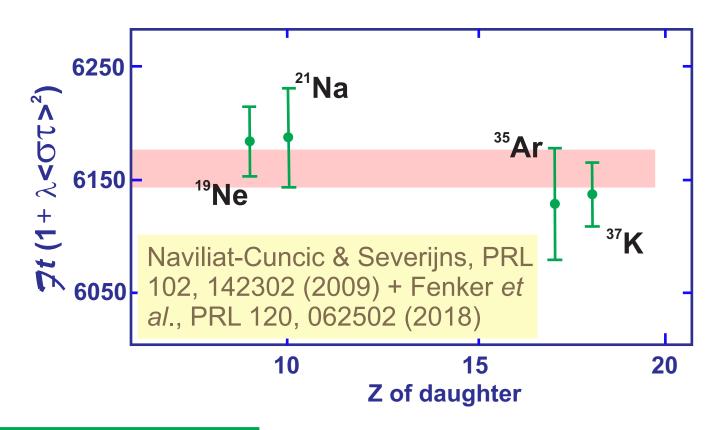
Beam-bottle span $0.9680 \le V_{ud} \le 0.9750$

$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{G_{V}^{2} (1 + \Delta_{R})(1 + \lambda^{2} < \sigma \tau >^{2})}$$

$$\mathcal{I}t = ft (1 + \delta_{R}^{"})[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{G_{V}^{2} (1 + \Delta_{R})(1 + \lambda^{2} < \sigma \tau >^{2})}$$

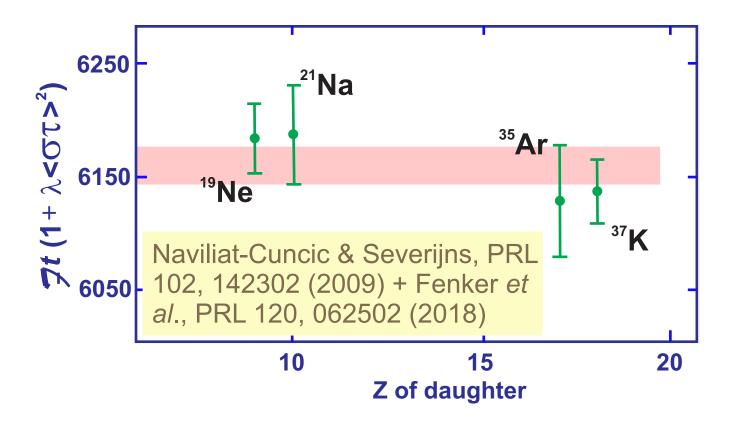


$$\mathcal{I}t = ft (1 + \delta_{R}')[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{G_{V}^{2} (1 + \Delta_{R})(1 + \lambda^{2} < \sigma \tau >^{2})}$$



$$V_{ud} = 0.9727 \pm 0.0014$$

$$\mathcal{I}t = ft (1 + \delta_{R}^{"})[1 - (\delta_{C} - \delta_{NS})] = \frac{K}{G_{V}^{2} (1 + \Delta_{R})(1 + \lambda^{2} < \sigma \tau >^{2})}$$



$$V_{ud} = 0.9727 \pm 0.0014$$

nuclear 0⁺→0⁺ V_{ud} = 0.9742 ± 0.0002

PION BETA DECAY

Decay process:

$$^+ \longrightarrow ^0 e^+$$
 e
 $0\overline{,}1 \longrightarrow 0\overline{,}1$

PION BETA DECAY

Decay process:

$$\pi^+ \longrightarrow \pi^0 e^+ \nu_e$$

0-,1 \longrightarrow 0-,1

Experimental data:

$$\tau = 2.6033 \pm 0.0005 \times 10^{-8} \text{s}$$
 (PDG 2017)

BR =
$$1.036 \pm 0.007 \times 10^{-8}$$
 Pocanic et al,

Pocanic *et al,* PRL 93, 181803 (2004)

Result:

$$V_{ud} = 0.9749 \pm 0.0026$$

PION BETA DECAY

Decay process:

$$\pi^+ \longrightarrow \pi^0 e^+ \nu_e$$

0-,1 \longrightarrow 0-,1

Experimental data:

$$\tau = 2.6033 \pm 0.0005 \times 10^{-8} \text{s}$$
 (PDG 2017)

BR =
$$1.036 \pm 0.007 \times 10^{-8}$$
 Pocanic et al,

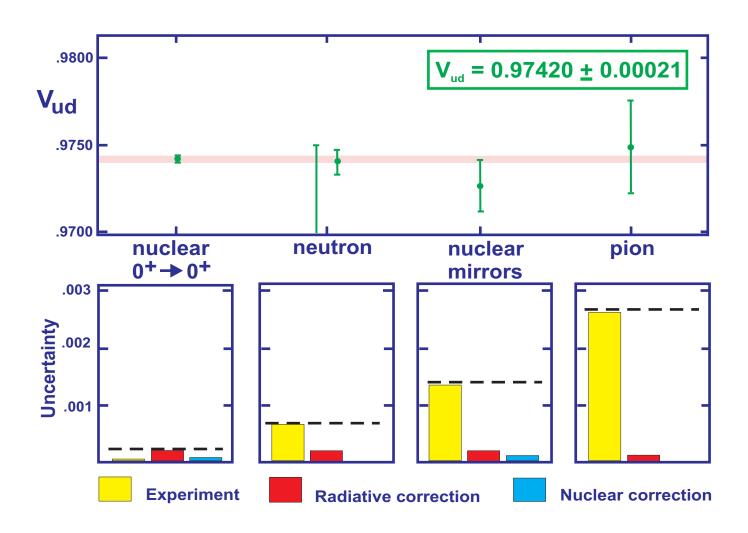
Pocanic *et al*, PRL 93, 181803 (2004)

Result:

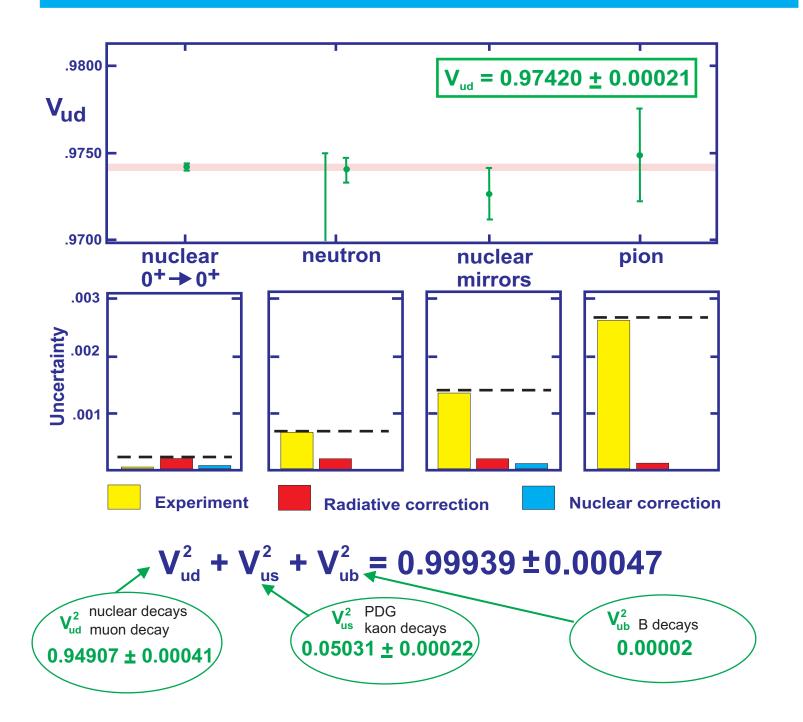
$$V_{ud} = 0.9749 \pm 0.0026$$

nuclear 0⁺→0⁺ V_{ud} = 0.9742 ± 0.0002

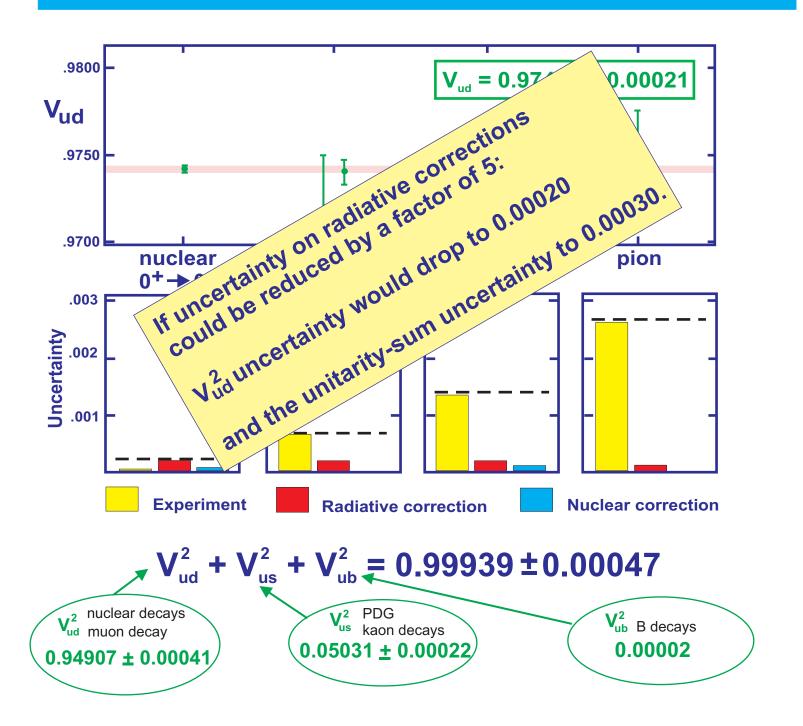
CURRENT STATUS OF Vud AND CKM UNITARITY



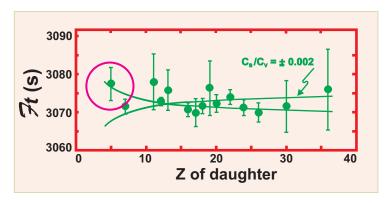
CURRENT STATUS OF Vud AND CKM UNITARITY



CURRENT STATUS OF Vud AND CKM UNITARITY

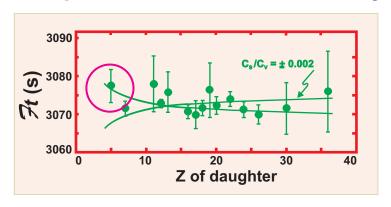


1. Improved ft value for ¹⁰C decay



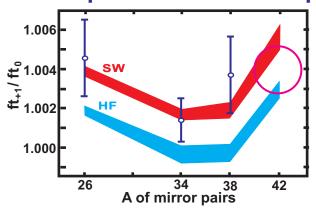
To limit or identify scalar current

1. Improved ft value for ¹⁰C decay



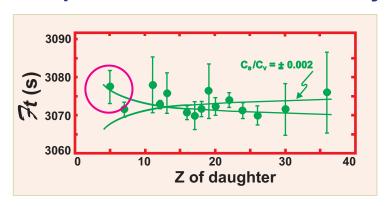
To limit or identify scalar current

2. Complete *A* = 42 mirror pair



To constrain δ_c correction terms

1. Improved ft value for ¹⁰C decay



To limit or identify scalar current

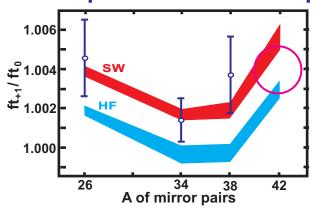
3. Reduce uncertainty in calculated Δ_R

If uncertainty on radiative corrections could be reduced by a factor of 5:

V_{ud} uncertainty would drop to 0.00020

and the unitarity-sum uncertainty to 0.00030.

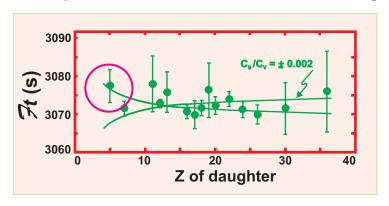
2. Complete A = 42 mirror pair



To constrain δ_c correction terms

To improve unitarity test

1. Improved ft value for ¹⁰C decay



To limit or identify scalar current

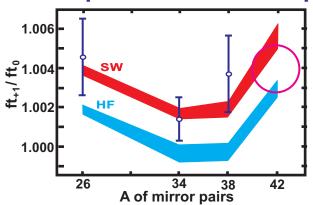
3. Reduce uncertainty in calculated Δ_R

If uncertainty on radiative corrections could be reduced by a factor of 5:

V_{ud}² uncertainty would drop to 0.00020 and the unitarity-sum uncertainty to 0.00030.

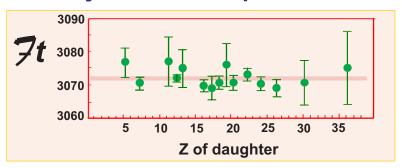
To improve unitarity test

2. Complete A = 42 mirror pair



To constrain δ_c correction terms

4. Revisit all calculated corrections. If transition-dependence is altered, improve all measured *ft* values to verify that CVC is preserved.



SUMMARY AND OUTLOOK

- 1. Analysis of superallowed $0^+ \rightarrow 0^+$ nuclear β decay confirms CVC to $\pm 0.011\%$ and thus yields $V_{ud} = 0.97420(21)$.
- 2. The three other experimental methods for determining V_{ud} yield consistent results; the neutron-decay result is only a factor of 4 less precise and agrees completely.
- 3. The current value for V_{ud} , when combined with the PDG values for V_{us} and V_{ub} , satisfies CKM unitarity to ±0.05%.

SUMMARY AND OUTLOOK

- 1. Analysis of superallowed $0^+ \rightarrow 0^+$ nuclear β decay confirms CVC to $\pm 0.011\%$ and thus yields $V_{ud} = 0.97420(21)$.
- 2. The three other experimental methods for determining V_{ud} yield consistent results; the neutron-decay result is only a factor of 4 less precise and agrees completely.
- 3. The current value for V_{ud} , when combined with the PDG values for V_{us} and V_{ub} , satisfies CKM unitarity to ±0.05%.
- 4. The largest contribution to V_{ud} uncertainty is from the inner radiative correction, Δ_R . Very little reduction in V_{ud} uncertainty is possible without improved calculation of Δ_R .
- 5. Transition-dependent corrections have been tested by requiring consistency among the 14 known transitions (CVC), and agreement with mirror-transition pairs.
- 6. Improved and new correction terms are appearing. They will need to be tested for compatibility with CVC.

SUMMARY AND OUTLOOK

- 1. Analysis of superallowed $0^+ \rightarrow 0^+$ nuclear β decay confirms CVC to $\pm 0.011\%$ and thus yields $V_{ud} = 0.97420(21)$.
- 2. The three other experimental methods for determining V_{ud} yield consistent results; the neutron-decay result is only a factor of 4 less precise and agrees completely.
- 3. The current value for V_{ud} , when combined with the PDG values for V_{us} and V_{ub} , satisfies CKM unitarity to ±0.05%.
- 4. The largest contribution to V_{ud} uncertainty is from the inner radiative correction, Δ_R . Very little reduction in V_{ud} uncertainty is possible without improved calculation of Δ_R .
- 5. Transition-dependent corrections have been tested by requiring consistency among the 14 known transitions (CVC), and agreement with mirror-transition pairs.
- 6. Improved and new correction terms are appearing. They will need to be tested for compatibility with CVC.

It's been a fun way to make a living

The people who helped make it fun (since 1997)

Ian Towner

TAMU

Victor lacob
Ninel Nica
Hyo In Park
Vladimir Horvat
Lixin Chen
Vladimir Golovko
Maria Sanchez-Vega
Peter Lipnik
Russell Neilson
John Goodwin
Miguel Bencomo

Livius Trache
Brian Roeder
Evgeny Tereshatov
Dan Melconian
Bob Tribble
Carl Gagliardi

External

Gordon Ball (TRIUMF)
Dick Helmer (INEEL)
Guy Savard (ANL)
Subramanian Raman (ORNL)
Malvina Trzhaskovskaya (St. Petersburg)
Tommi Eronen (Jyvaskyla)
Juha Aysto (Jyvaskyla)
Maxime Brodeur (Notre Dame)