Measurement of the Half-Lives of ³⁴Cl and ³⁴Ar

V. E. Mayes, J. C. Hardy, V. E. Iacob, M. Sanchez-Vega, A. Azhari, C. A. Gagliardi, R. G. Neilson, L. Trache, and R. E. Tribble

As part of our program [1] to test the unitarity of the CKM matrix through superallowed nuclear decay, we have measured the half-lives of ³⁴Cl and ³⁴Ar with a precision of 0.03% and 0.4% respectively. Although ³⁴Cl is a $T_{z} = 1$ superallowed emitter whose half-life is already relatively wellknown [2], it is also the daughter of ³⁴Ar and, as discussed in last year's Progress Report [3], any measurement sensitive only to particles will not only record those from the decay of ³⁴Ar will necessarily include the particles from the decay of ³⁴Cl. Since our ability to determine the ³⁴Ar half-life is limited by the precision with which the ³⁴Cl half-life is known, we have been motivated to re-measure the latter with improved precision. The results of these two separate experiments will be described in this report.

We performed these measurements at the end of the MARS recoil spectrometer, using our fast tape-transport system [4]. For the ³⁴Cl experiment, we used a cooled hydrogen gas target and a 25 AMeV ³⁵Cl beam from the cyclotron to initiate the ¹H (³⁵Cl,pn) ³⁴Cl reaction. A high-purity beam of fully stripped ³⁴Cl ions at 20 AMeV was separated from the other recoil products by the MARS spectrometer. Those ions exited MARS through a 50- m-thick Kapton window, passed through a 0.3-mm-thick BC-404 scintillator and a stack of aluminum degraders optimized in thickness so that the ³⁴Cl ions eventually stopped in the 76- mthick aluminized mylar tape of our tapetransport system. The beam consisted of two components: the 0⁺ ground-state of ³⁴Cl ($t_{1/2}$ = 1.53 s) and the 3⁺ isomeric state in ³⁴Cl ($t_{1/2}$ = 32.2 min.). In principle, it might also have included a very small amount of ³⁰P ($t_{1/2}$ = 150 s) but, since the range of ³⁰P was different from ³⁴Cl, very little of it should have been deposited in the tape. We checked for this possibility, however, by making measurements with two different sets of aluminum degraders chosen to increase the amount of ³⁰P stopped in the tape if, indeed, any were present.

In our experiment, the ³⁴Cl activity was collected on the tape for 3 s; then the beam was turned off and the sample moved within 180 ms to the center of a 4 proportional gas counter [5], located in a lowbackground region. The counter signals were then multiscaled for a period of 35 s and a 250 channel decay spectrum was recorded in a similar manner to that used for ^{22}Mg [6]. This collect/move/detect cycle was clockcontrolled and was repeated continuously. Within the counting period a pulse synthesizer accurate to 5 ppm provided the channel advance. Special care was taken to avoid any systematic errors that could be generated by the acquisition system. The counter signals were amplified and sent to a fast discriminator, whose signals then went to a gate generator. The time duration of the gate signal was chosen to be much longer than any dead-time introduced by the up-stream modules. This produced a well-defined,

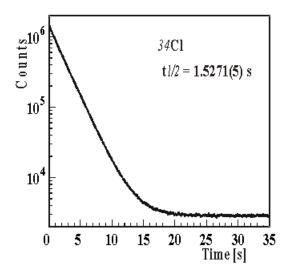
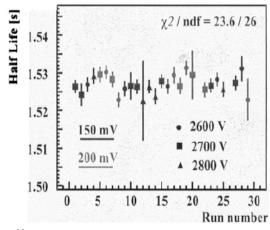
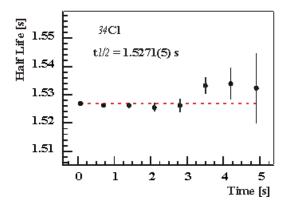



Figure 1: Total time spectrum obtained for the β -decay of ³⁴Cl.


dominant and non-extendable dead time. A total of about 24 million ³⁴Cl decays were recorded in 27 separate runs. We pre-sorted the data by testing each cycle and rejecting any that had significantly too many or too few counts relative to the number of ³⁴Cl ions recorded in the plastic scintillator. Very few cycles were rejected in this way. The decay curve for the sum of all accepted cycles is shown in Figure 1. We then individually analyzed the data from each run with a maximum-likelihood fit to a spectrum obtained by summing the dead-time-corrected spectra from all accepted cycles. As a systematic check on the fitting procedure, a parallel fit was also performed on Monte-Carlo-generated spectra with the same statistics and composition as the experimental set. The agreement of the fitted parameters with the values used to generate the artificial data validated the fitting procedure.

To check for the existence of systematic errors introduced by the electronics, the individual runs were made with different settings for the discriminator threshold, the detector bias, and the dominant dead-time. No indication of a systematic bias was evident when these measurements were compared (see Figure 2). In addition, we checked for the presence of short-lived impurities or other possible counting-rate dependence by progressively removing the data from time bins at the beginning of the counting cycle and repeating the analysis procedure. As can be verified in Figure 3, the derived half-life is stable as channels are removed.

For the ³⁴Ar experiment, a high-purity radioactive beam of ³⁴Ar was produced via the ¹H (³⁵Cl, 2n) ³⁴Ar reaction. As in the ³⁴Cl experiment, the ³⁴Ar atoms were stopped in the tape by passing them first through a a plastic scintillator and a stack of aluminum degraders. The ³⁴Ar activity was collected for either 0.7 s or 1 s, and then moved rapidly via the tape-transport system to the 4 proportional gas counter located in a lowbackground region The counter signals were then multiscaled for a period of 12 s, and a 500 channel decay spectrum was recorded. We had previously checked that argon does not diffuse out of the tape by implanting 1.77-

s ³⁵Ar in the tape and measuring its half-life

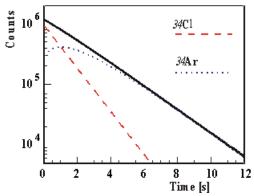

Figure 3: Test for possible systematic errors in the measurement of the decay of ³⁴Cl caused by undetected short-lived impurities or by rate-dependent counting losses. The abscissa represents the time period at the beginning of the counting cycle for which the data are omitted from the fit.

Figure 2: Search for possible systematic bias in the ³⁴Cl measurement due to the acquisition set-up:discriminator threshold or detector bias.

by the same technique: our results agreed with the well-known half-life of ³⁵Ar, thus ruling out diffusion from the tape on this time scale.

A total of about 140 million decay events, from both ³⁴Ar and its ³⁴Cl daughter, were recorded in 40 separate runs. The data were pre-sorted as before, with high-noise and low-count cycles removed. Once again, very few cycles were rejected. We then analyzed the data run-by-run by summing the deadtime-corrected spectra from all cycles in each run and then least-squares fitting the sum spectrum for that run using the maximumlikelihood technique. Unfortunately, because the decay spectra contain both parent and daughter decays (see Figure 4), both of which have very similar half-lives, the fits are relatively insensitive to the half-life of ³⁴Ar. Thus, even though we acquired over 10^8 events in all, the uncertainty ultimately achievable on the ³⁴Ar half-life is over an order of magnitude worse than that quoted for ³⁴Cl. Again, tests of the data for possible systematic errors yielded no observable effect.

From these results, our preliminary values for the half-lives of ³⁴Cl and ³⁴Ar are 1527.1(5) ms and 0847.0(37) ms, respectively. Our result for ³⁴Cl is consistent with the value obtained [2] from current world data, 1525.8(9) ms, but represents more than a factor of two improvement in precision over any previous single measurement. In the case of ³⁴Ar, our result also agrees with the only comparable previous measurement [7], which yielded 844.5(34) ms, but with a similar uncertainty. Actually, in this case, the previous measurement used a different technique – analyzing the decay of β-delayed

Figure 4: Total time spectrum for the β -decay of ³⁴Ar and its daughter ³⁴Cl. The calculated contributions of the two components are also shown.

 γ -rays in ³⁴Cl – so consistency between the two results is an important conclusion in itself. It is interesting to note that, in our present experiment, approximately half the uncertainty quoted for the ³⁴Ar half-life is still due to the very small uncertainty remaining in the ³⁴Cl value.

We are considering making one more measurement of the ³⁴Ar half-life with the gas counter in order to improve its uncertainty somew hat.

References

- J. C. Hardy et al., Progress in Research, Cyclotron Institute, Texas A&M University (2001-2002), I-21.
- [2] J. C. Hardy and I. S. Towner, Nucl. Phys. A509, 429 (1990).
- [3] V. E. Mayes et al., Progress in Research, Cyclotron Institute, Texas A&M University (2000-2001), p. I-32.
- [4] J. C. Hardy, et al., Progress in Research, Cyclotron Institute, Texas A&M University (1998-1999), p. V-20.
- [5] V. E. Iacob and J. C. Hardy, *Progress in Research*, Cyclotron Institute, Texas A&M University (1998-1999), p. V-22.
- [6] V. E. Iacob et al., Progress in Research, Cyclotron Institute, Texas A&M University (2000-2001), p. I-30.
- [7] J. C. Hardy *et al.*, Nucl. Phys. A223, 157 (1974).