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Abstract. A systemH with a Hagedorn-like mass spectrum imparts its unique temperatureTH to any other system coupled
to it. An H system radiates particles in preexisting physical and chemical equilibrium. These particles form a saturated
vapor at temperatureTH . This coexistence describes a first order phase transition.An H system is nearly indifferent to
fragmentation into smallerH systems. A lower mass cut-off in the spectrum does not significantly alter the general picture.
These properties of the Hagedorn thermostats naturally explain a single value of hadronization temperature observed in
elementary particle collisions at high energies and lead tosome experimental predictions.
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INTRODUCTION

A systemA with energyE and degeneracy
ρA(E) ∝ exp(kAE) (1)

while seemingly having a partition function of the form

Z(T) =

∫

ρA(E)exp(−E/T)dE (2)

for all temperaturesT ≤ 1/kA in fact admits only onetemperatureT = TA = 1/kA and it imparts that temperature to
anysystem coupled to it.

The partition function of Eq. (2) implies that an external thermostatB which, by definition hasρB(E) ∝ exp(−kBE),
can impart its temperatureTB = 1/kB to the systemA. This is not so, as can be seen by considering the generating
micro-canonical partition

P(x) = ρA(E−x)ρB(x) = exp(kA [E−x])exp(kBx)

= exp

[

E−x
TA

]

exp

[

x
TB

]

. (3)

The most probable partition is given by

∂P(x)
∂x

= 0 = kA−kB =
1
TA

− 1
TB

. (4)

But this is hardly possible since in generalTA 6= TB: two thermostats can never be at equilibrium unless they areat the
same temperature.

This preamble is motivated by the fact that the empirical hadronic mass spectra (Hagedorn spectra [1, 2]), the
Statistical Bootstrap Model (SBM) [3, 4, 5] and the MIT bag model [6] have a degeneracy whose leading term is
of the form of Eq. (1). It is the aim of this paper to explore in apedagogical manner the implications of such a
spectrum, making only passing references to the more complex physical situations occurring in particle-particle and
nucleus-nucleus collisions.

Hagedorn noted that the hadronic mass spectrum (level density) has the asymptotic (m→ ∞) form

ρH (m) ≈ exp(m/TH ) , (5)



wherem is the mass of the hadron in question andTH is the temperature associated with the mass spectrum [1, 2].
The question of the mass range over which (5) is valid is stillunder discussion [4, 5].

The M.I.T. bag model [6] of partonic matter reproduces this behavior via a constant pressureB of a “bag” of partonic
matter [7, 8]. The pressurep inside a bag at equilibrium without additional conserved quantities is

p =
gπ2

90
T4

B = B, (6)

whereg is the number of partonic degrees of freedom. The bag constant forces a constant temperatureTB on the bag.
Similarly, the enthalpy densityε of the bag

ε =
H
V

=
gπ2

30
T4

B +B (7)

is constant. HereH is the enthalpy andV is the volume of the bag. Thus, an injection of an arbitrary amount of energy
leads to an isothermal, isobaric expansion of the bag and thebag entropyS is proportional toH:

S=

∫ δQ
T

=

∫ H

0

dH
T

=
H
TB

, (8)

whereδQ is the change in heat of the bag. The bag’s spectrum (level density) is thenρ = exp(S) given by Eq. (5) with
TB = TH andH ≡ m.

Following our recent results [9, 10], we show here that a system H possessing a Hagedorn-like spectrum,
characterized by an entropy of the form (8), not only has a unique microcanonical temperature

TH =

(

dS
dE

)−1

=
∂H
∂S

∣

∣

∣

∣

p
= TB , (9)

but also imparts this same temperature to any other system towhich H is coupled. In the language of standard
thermodynamics:H is a perfect thermostat.

The property of a perfect thermostat is well known. For instance, it is indifferent to the transfer of any portion of
its energy to any parcel within itself, no matter how small. In other words, it is at the limit of phase stability and its
internal fluctuations of the energy density are maximal.

HARMONIC OSCILLATOR COUPLED TO H

In order to demonstrate the thermostatic behavior of a Hagedorn system, let us begin by couplingH to a one
dimensional harmonic oscillator and use a microcanonical treatment. The unnormalized probabilityP(ε) for finding
an excitation energyε in the harmonic oscillator out of the system’s total energyE is

P(ε) ∼ ρH (E− ε)ρosc(ε)

= exp

(

E− ε
TH

)

= ρH (E)exp

(

− ε
TH

)

. (10)

Recall that for a one dimensional harmonic oscillatorρosc is a constant. The energy spectrum of the oscillator is
canonical up to the upper limitεmax= E with an inverse slope (temperature) ofTH independent ofE. The mean value
of the energy of the oscillator is given by

ε = TH

[

1− E/TH

exp(E/TH )−1

]

. (11)

Thus in the limit thatE → ∞: ε → TH , i.e. no temperature other thatTH is admitted. In the standard language
of statistical mechanics this example means that a one dimensional harmonic oscillator can be used as an ideal
thermometer.



AN IDEAL VAPOR COUPLED TO H

For a more physically relevant example, let us consider a vapor of N ≫ 1 non-interacting Boltzmann particles of mass
mB and degeneracygB coupled toH . The microcanonical level density of the vapor with kineticenergyε is

ρvapor(ε) =
VN gN

B

N!
(

3
2N

)

!

(mBε
2π

)
3
2N

, (12)

whereV is is the volume. The microcanonical partition of the total system is

ρtotal(E,ε) = ρH (E− ε)ρvapor(ε)

=
VN gN

B

N!
(3

2N
)

!

(mBε
2π

)
3
2N

e
E−mBN−ε

TH . (13)

Just as with the harmonic oscillator, the distribution of the vapor is exactly canonical up toεmax = E, if the particles
are independently present, orεmax = E−mN, if the particles are generated byH . In either case, the temperature of
the vapor is alwaysTH .

The maximum ofρtotal(E,ε) with respect toε gives the most probable kinetic energy per particle as

∂ρtotal(E,ε)

∂ε
=

3N
2ε

− 1
TH

= 0 ⇒ ε
N

=
3
2

TH , (14)

provided thatE ≥ mBN + 3
2NTH . (For mBN < E < mBN + 3

2NTH , the most probable value of the kinetic energy
per particle isε

N = E
N −mB < 3

2TH ; for E ≤ mBN, ε
N = 0. ) AgainTH is the sole temperature characterizing the

distribution up to the microcanonical cut-off, which may beabove or below the maximum of the distribution since the
form of ρtotal(E,ε) is independent ofE.

The maximum ofρtotal(E,ε) with respect toN at fixedV is given by

∂ lnρtotal(E,ε)

∂N
= − mB

TH

+ ln

[

gB
V
N

(

mBTH

2π

) 3
2
]

= 0, (15)

where Eq. (14) was used forε. Thus the most probable particle density of the vapor is independent ofV:

N
V

= gB

(

mBTH

2π

)
3
2

e
− mB

TH ≡ nH . (16)

Equation (16) demonstrates that not only isH a perfect thermostat but also a perfect particle reservoir.Particles
of different massm will be in chemical equilibrium with each other. At equilibrium, particles are emitted fromH
and form a saturated vapor at coexistence withH at temperatureTH . This describes a first order phase transition
(hadronic to partonic). Coexistence occurs at a single temperature fixed by the bag pressure.

These results explain the common value of: the hadronization temperatures obtained within the statistical hadroniza-
tion model [11]; the inverse slopes of the transverse mass spectra of hadrons observed in high energy elementary par-
ticle collisions [12, 13]; and the transition temperature from lattice QCD calculations for low baryonic density [14].
For further discussion see [10].

H AS A RADIANT BAG

Let us assume thatH is a bag thick enough to absorb any given particle of the vaporstriking it. Then, detailed balance
requires that on averageH radiates back the same particle. Under these conditions particles can be considered to be
effectively emitted from the surface ofH . Thus the relevant fluxes do not depend in any way upon the inner structure
of H .

In fact, the results given in equations (14) and (16) show that the saturated vapor concentration depends only upon
mB andTH as long asH is present. A decrease in the volumeV does not increase the vapor concentration, but



induces a condensation of the corresponding amount of energy out of the vapor and intoH . An increase inV keeps
the vapor concentration constant via evaporation of the corresponding amount of energy out ofH and into the vapor.
This is reminiscent of liquid-vapor equilibrium at fixed temperature, except that here coexistence occurs at a single
temperatureTH , rather than over a range of temperatures as in ordinary fluids.

The bag wall is Janus faced: one side faces the partonic world, and, aside from conserved charges, radiates a partonic
black body radiation responsible for balancing the bag pressure; the other side faces the hadronic world and radiates
a hadronic black body radiation, mostly pions. Both sides ofthe bag wall are at the temperatureTH . It is tempting
to attribute most, if not all, of the hadronic and partonic properties to the wall itself, possibly even the capability to
enforce conservation laws globally (quantum number conductivity). Despite the fact that this wall is an insurmountable
horizon, with hadronic measurements such as bag size and total radiance we can infer some properties of the partonic
world, e.g. the number of degrees of freedom [12].

We can estimate an upper limit for the emission time using theoutward energy flux of particles radiated from the
bag. At equilibrium the in-going and out-going fluxes must bethe same, thus the outward flux of particles in the
nonrelativistic approximation using Eq. (16) is

ϕnH
≃ nH

4

(

mB

mB +2TH

)
√

8
TH

πmB
. (17)

Using the technique developed in [15, 16], one finds the energy flux ϕEH
and momentum fluxprad as

ϕEH
≃ (mB +2TH )ϕnH

, prad =
1
2

nH TH . (18)

The pressureprad exerted on the bag by its radiation can be compared to the intrinsic bag pressure in Eq. (6): for pions
prad∼ 0.02B. The timeτ for the bag to dissolve into its own radiation is approximately

τ ≃
3π exp

(

mB
TH

)

E0

gB
(

m2
BT2

H

)

R2
0

, (19)

whereR0 is the initial bag radius andE0 is the initial bag total energy.
The fluxes written in Eqs. (17) and (18) (particle or energy per unit surface area) are integrated over an assumed

spherical bag to give the result in Eq. (19). However, because of the lack of surface tension, the bag’s maximum
entropy corresponds to either an elongated (cylinder) or a flattened shape (disc). Thus, Eq. (19) should be interpreted
as an upper limit. More detailed studies of hadron emission from bags concerning hydrodynamic shock waves and
freeze out shocks can be found elsewhere [15, 16, 17, 18].

The decoupling between the vapor concentration andmB andTH occurs whenH has completely evaporated (i.e.
whenE−mBN− 3

2NTH = 0) at a volume of

Vd ≃
1

nH

E
[

mB + 3
2TH

] . (20)

The disappearance ofH allows the vapor concentration to decrease inversely proportionally toV as

N
V

=
nH Vd

V
. (21)

The temperature, however, remains fixed atTH because of conservation of energy and particle number aboveVd.
Solid curves in Fig. 1 show this schematically.

The discussion above assumes that the Hagedorn spectrum extends down tom= 0. However, experimentally there
appears to be a lower cut off of the spectrum atm0. This modifies the above results as follows (for a detailed analysis
see the section “Generalization to a Complete Hagedorn Spectrum”).

For energiesE−mBN− ε ≫ m0 andV < Vd the above results hold as written. However, if we increase the volume
well beyondVd at which the Hagedorn spectrum is truncated atm0, the situation is slightly different.H evaporates
until its mass ism0. If the entire mass ofH is fully transformed into vapor particles as the volume is increased further,
then the excess particles temporarily increase the concentration and permanently decrease the temperature. As the
volume increases further, the concentration changes inversely proportional toV

N
V

=
nH Vd + m0

mB

V
, (22)



FIGURE 1. Typical behavior of the entire system’s temperatureT and concentrationN/V as the function of the
system’s volumeV in the absence of restrictions (solid curve) and for a finite cut off atm0 of the Hagedorn spectrum
(dashed curve).

while the temperature remains constant at

T =
nH Vd

nH Vd + m0
mB

TH . (23)

Dashed curves in Fig. 1 show this schematically.

FRAGMENTATION OF H

A question of interest is the stability ofH against fragmentation. If the translational degrees of freedom are neglected,
H is indifferent to fragmentation into an arbitrary number ofparticles of arbitrary mass (within the constraints of
mass/energy conservation).

Let us now consider the case in which the mass of the vapor particle mB is allowed to be free. The system’s level
densityρtotal(E,ε) is still given by Eq. (13). Using Eqs. (14) and (16), one finds the most probable value of the system’s
level density asρ∗

total(E,ε) ≈ exp[S∗], where the entropy isS∗ = E/TH + N. Differentiatingρ∗
total(E,ε) with respect

to mB and applying Eq. (16) gives

∂ lnρ∗
total(E,ε)

∂mB
= N

[

3
2mB

− 1
TH

]

⇒ mB =
3
2

TH , (24)

i.e. the last equality provides the maximum of level densityfor N 6= 0. Since all the intrinsic statistical weights in
ρ∗

total(E,ε) are factored into a singleH , the system breaks into fragments withmB = 3
2TH except for one whose mass

is determined by mass/energy conservation.



Substituting the most probable value ofε and mB into the most probable value ofN one obtains the vapor
concentration

N
V

= gB

(

3
4πe

)
3
2

T3
H

. (25)

The density of the vapor of nonrelativistic particles acquires the form typical of the ultrarelativistic limit.
If the value of mass given by Eq. (24) does not exist, then the most probable value of level densityρ∗

total(E,ε)

corresponds to the massm∗ which is nearest to32TH andN(m∗) given by Eq. (16). In terms of hadron spectroscopy
the value ofm∗ that maximizes the level densityρ∗

total(E,ε) is the pion mass.
If H is required to fragment totally into a number of equal fragments of massmH all endowed with their

translational degrees of freedom, then (forgB = 1)

ρT =
e

E−ε
TH VN

N!
(

3
2N

)

!

[mH ε
2π

]
3
2N

=
e

E
TH VN

N!

[

mH TH

2π

]
3
2N

, (26)

where in the last step we substituted the most probable valueof the kinetic energy (14) and used the Stirling formula
for

(

3
2N

)

!. From Eq. (26) it is seen that all the Hagedorn factors collapse into a single one with them-independent
argumentE. Maximization of (26) with respect tomH leads to

∂ lnρT

∂mH
=

3N
2mH

= 0, (27)

which is consistent withN = 1 andmH = E, namely a single Hagedorn particle with all the available mass.
This again illustrates the indifference ofH toward fragmentation. Of course Eq. (14) gives directly themass

distribution of the Hagedorn fragments under the two conditions discussed above. These results justify the assumption
of the canonical formulation of the statistical hadronization model that smaller clusters appear from a single large
cluster [19].

INTERMEDIATE CONCLUSIONS

A systemH , with a Hagedorn-like mass spectrum, is a perfect thermostat and a perfect particle reservoir. Conse-
quently, any system coupled toH can have only the temperature ofH : TH . This behavior may explain the common
value of: the hadronization temperatures obtained within statistical models; the transition temperature from lattice
QCD calculations for low baryonic density; and the inverse slopes of the transverse mass spectra of hadrons (temper-
ature) observed in high energy elementary particle collisions and high energy nucleus-nucleus collisions (for details
see [10]). The common temperature of the experimental spectra suggest that the observed particles originate from an
H -like system.

The hadronic side ofH radiates particles in preexisting physical and chemical equilibrium just as a black body
radiates photons in physical and chemical equilibirum (compare to Ref. [20]). Particles emitted fromH form a
saturated vapor that coexists withH . This coexistence describes a first order phase transition (hadronic to partonic)
and occurs at a single temperature fixed by the bag pressure. An H system is nearly indifferent to fragmentation into
smallerH systems. A lower cut-off in the mass spectrum does not alter our results [10].

GENERALIZATION TO A COMPLETE HAGEDORN SPECTRUM

To have a more realistic model we should consider a more complicated Hagedorn mass spectrumgH(mH) =
exp[mH/TH ](mo/mH)a for the resonance massesmH above the lower cut-offmo ≫ TH (a is a parameter discussed
below). Let us study the microcanonical ensemble ofNB Boltzmann point-like particles of massmB and degeneracy
gB, andNH hadronic point-like resonances of massmH with a mass spectrumgH(mH) assuming thatmo > mB. A
recent analysis [21] suggests that the Hagedorn mass spectrum can be established formo < 2 GeV.

In the Statistical Bootstrap Model (SBM) [22] and the MIT bagmodel [7] it was found that formH → ∞ the
parametera≤ 3. For finite resonance masses the value ofa is unknown, so it will be considered as a fixed parameter.



The microcanonical partition of the system, with volumeV, total energyE and zero total momentum, can be written
as follows

Ω =
VNH

NH !

[

NH

∏
k=1

gH(mH)

∫

d3Qk

(2π)3

]

VNB

NB!

[

NB

∏
l=1

gB

∫

d3pl

(2π)3

]

δ
(

E−
NH

∑
i=1

εH
i −

NB

∑
j=1

εB
j

)

, (28)

where the quantityεH
i = ε(mH ,Qi)

(

εB
j = ε(mB, p j) andε(M,P) ≡

√
M2 +P2

)

denotes the energy of the Hagedorn

(Boltzmann) particle with the 3-momentum~Qi (~p j ). In order to simplify the presentation of our idea, Eq. (28)accounts
for energy conservation only and neglects momentum conservation.

The microcanonical partition (28) can be evaluated by the Laplace transform in total energyE [23]. Then the
momentum integrals in (28) are factorized and can be performed analytically. The inverse Laplace transform in the
conjugate variableλ can be done analytically for the nonrelativistic and ultrarelativistic approximations of the one-
particle momentum distribution function

∞
∫

0

d3p e−λ ε(M,p)

(2π)3 ≈







[

2M
λ

]
3
2I 1

2
e−Mλ , MRe(λ ) ≫ 1 ,

2
λ 3 I2e−Mλ , MRe(λ ) ≪ 1 ,

(29)

where the auxiliary integral is denoted as

Ib ≡
∞

∫

0

dξ
(2π)2 ξ b e−ξ . (30)

Since the formal steps of further evaluation are similar forboth cases, we discuss in detail the nonrelativistic limit
only, and later present the results for the other case. The nonrelativistic approximation (MRe(λ ) ≫ 1) for Eq. (28) is
as follows

Ωnr =

[

VgH(mH) [2mH ]
3
2 I 1

2

]

NH !

NH
[

VgB [2mB]
3
2 I 1

2

]

NB!

NB

E
3
2 (NH+NB)−1
kin

(

3
2(NH +NB)−1

)

!
, (31)

whereEkin = E−mHNH −mBNB is the kinetic energy of the system.
As shown below, the most realistic case corresponds to the nonrelativistic treatment of the Hagedorn resonances

because the resulting temperature is much smaller than their masses. Therefore, it is sufficient to consider the ultra-
relativistic limit for the Boltzmann particles only. In this case (MRe(λ ) ≪ 1) the equation (28) can be approximated
as

Ωur =

[

VgH(mH) [2mH ]
3
2 I 1

2

]

NH !

NH

[VgB 2 I2]
NB!

NB E
3
2 (NH+2NB)−1
kin

(3
2(NH +2NB)−1

)

!
, (32)

where the kinetic energy does not include the rest energy of the Boltzmann particles, i.e.Ekin = E−mHNH .
Within our assumptions the above results are general and canbe used for any number of particles, provided

NH + NB ≥ 2. It is instructive to consider first the simplest caseNH = 1. This formulation of the model, in which
a Hagedorn thermostat is always present, allows us to study the problem rigorously and provides us with a qualitative
picture forNH > 1. ForNH = 1 andNB ≫ 1 we treat the mass of Hagedorn thermostatmH as a free parameter and
determine the value which maximizes the entropy of the system. The solutionm∗

H > 0 of the extremum condition

δ lnΩnr(NH = 1)

δ mH

1
TH

+
(

3
2 − a

)

1
m∗

H
− 3(NB+1)

2 Ekin
= 0 (33)

provides the maximum of the system’s entropy, if formH = m∗
H the second derivative is negative

δ 2 lnΩnr(NH = 1)

δ m2
H

−
(3

2 − a
) 1

m∗2
H

− 3(NB+1)

2 E2
kin

< 0. (34)

The inequality (34) is a necessary condition of the maximum of the microcanonical partition. Postponing the analysis
of (34) till the next section, where we study it in more details, let us assume for a moment that the inequality (34) is



satisfied. Then the extremum condition (33) defines the temperature of the system of(NB +1) nonrelativistic particles

T∗(m∗
H) ≡ 2 Ekin

3(NB +1)
=

TH

1 +
(3

2 − a
) TH

m∗
H

. (35)

Thus, asm∗
H → ∞ it follows thatT∗(m∗

H) → TH , while for finitem∗
H ≫ TH anda > 3

2 (a < 3
2) the temperature of the

system is slightly larger (smaller) than the Hagedorn temperature, i.e.T∗ > TH (T∗ < TH ). Formally, the temperature
of the system in equation (35) may differ essentially fromTH for a light thermostat, i.e. form∗

H ≤ TH . However, it is
assumed that the Hagedorn mass spectrum exists above the cut-off massmo ≫ TH , thusm∗ ≫ TH .

THE ROLE OF THE MASS CUT-OFF
Now we study the effect of the mass cut-off of the Hagedorn spectrum on the inequality (34) in more detail. Fora≤ 3

2
the condition (34) is satisfied. Fora > 3

2 the inequality (34) is equivalent to the following inequality

m∗2
H

(

a− 3
2

)

T∗(m∗
H)

>
3
2

(NB +1) T∗(m∗
H) , (36)

which means that a Hagedorn thermostat should be massive compared to the kinetic energy of the system.
A more careful analysis shows that for a negative value of thedeterminantDnr (Ñ ≡ NB− 2

3a)

Dnr ≡
(

E−mBNB− 3
2 TH Ñ

)2−
4
(

a− 3
2

)

TH (E−mBNB) < 0, (37)

equation (33) has two complex solutions, while forDnr = 0 there exists a single real solution of (33). Solving (37) for
(E−mBNB), shows that for̃N > 2

3a−1, i.e. forNB > 4
3,a−1 the inequality (37) does not hold andDnr > 0. Therefore,

in what follows we will assume thatNB > 4
3a−1 and only analyze the caseDnr > 0. For this case equation (33) has

two real solutions
m±

H = 1
2

[

E−mBNB− 3
2 TH Ñ ±

√
Dnr

]

. (38)

Fora≤ 3
2 only m+

H solution is positive and corresponds to a maximum of the microcanonical partitionΩnr.
Fora > 3

2 both solutions of (33) are positive, but onlym+
H is a maximum. From the two limiting cases:

δ lnΩnr(NH = 1)

δ mH
≈

(

3
2 −a

)

1
mH

for mH ≈ 0, (39)

δ lnΩnr(NH = 1)

δ mH
≈ 3(NB+1)

2 Ekin
for Ekin ≈ 0, (40)

and the fact thatm±
H obey the inequalities

0 < m−
H ≤ m+

H < E−mBNB , (41)

it is clear thatm∗
H = m−

H is a local minimum of the microcanonical partitionΩnr, while m∗
H = m+

H is a local maximum
of the partitionΩnr.

Using Eq. (38) form+
H , it is clear that for any value ofa the constraintm+

H ≥ mo is equivalent to the inequality

NB ≤ Nkin
B ≡

E − [ mo
TH

− a] T∗(mo)

mB + 3
2 T∗(mo)

. (42)

Thus, at fixed energyE for all NB ≤ Nkin
B at m∗

H = m+
H there is a local maximum of the microcanonical partitionΩnr

with the temperatureT = T∗(m+
H). For NB > Nkin

B the maximum of the partitionΩnr cannot be reached due to the
cut-off constraint and, consequently, the most probable state corresponds tomH = mo with T ≤ T∗(mo) from Eq. (35).
In other words, forNB > Nkin

B the amount of energyE is insufficient for the mass of the Hagedorn thermostat to be
above the cut-offmo and simultaneously maintain the temperature of the Boltzmann particles according to Eq. (35).
By assumption there is a single Hagedorn thermostat in the system, therefore, asNB grows the temperature of the



system decreases fromT∗(mo) value. Thus, the equality (42) defines the kinematical limitfor reaching the maximum
of the microcanonical partition.

To prove that the maximum of the microcanonical partition atmH = m+
H is global it is sufficient to show that

the constraintm+
H ≥ mo is not consistent with the conditionm−

H > mo. For a ≤ 3
2 the maximum is global because

for 0 < mH < m+
H (mH > m+

H ) the partitionΩnr(NH = 1,mH) monotonically increases (decreases) withmH . For
a > 3

2 it is clear that the maximum atmH = m+
H is local, if the state with massmH = mo is more probable, i.e.

Ωnr(NH = 1,mo) > Ωnr(NH = 1,m+
H). Due to (41) this can occur, ifm−

H > mo. Substituting Eq. (38) into the last
inequality, shows that this inequality reduces to the condition NB > Nkin

B . This contradicts the constraintm+
H ≥ mo in

the form of Eq. (42). Thus, the maximum of the microcanonicalpartition is global.
To complete our consideration of the nonrelativistic case let us express the partition () in terms of the temperature

(35). Applying the Stirling approximation to the factorial(3
2(NB+1)−1)! for Nkin

B > NB ≫ 1 and reversing the integral
representations (29) and (30) forλ = 1/T∗(m+

H), one finds

Ωnr(NH = 1) =
V gH(m+

H)

T∗(m+
H)





∫

d3Q
(2π)3 e

−
√

m+2
H +Q2

T∗(m+
H )





e
E

T∗(m+
H )

NB!



V gB

∫

d3p
(2π)3 e

−
√

m2
B+p2

T∗(m+
H )





NB

. (43)

This is just the grand canonical partition of(NB+1) Boltzmann particles with temperatureT∗(m+
H). If NB > Nkin

B ≫ 1,

thenT∗(m+
H) in (43) should be replaced byTo(NB) ≡ 2(E−mBNB−mo)

3(NB+1) .

Fig. 1 shows that fora > 3
2 the system’s temperatureT = T∗(m+

H) as a function ofNB remains almost constant for
NB < Nkin

B , reaches a maximum atNkin
B and rapidly decreases likeT = To(NB) for NB > Nkin

B . Fora< 3
2 the temperature

has a plateauT = T∗(m+
H) for NB < Nkin

B , and rapidly decreases forNB > Nkin
B according toTo(NB).

The same results are valid for the ultrarelativistic treatment of Boltzmann particles. Comparing the nonrelativistic
and ultrarelativistics expressions for the microcanonical partition, i.e. equations () and (32), respectively, one finds that
the derivation of the ultrarelativistic limit requires only the substitutionNB → 2NB andmB/TH → 0 in equations (33 –
43). Note that this substitution does not alter the expression for the temperature of the system, i.e. the right hand side
of (35).

Finally, we show that for a heavy Hagedorn thermostat (m+
H ≫ mo) these results remain valid for a single Hagedorn

thermostat split intoNH pieces of the same mass. SubstitutingmH → mHNH in the nonrelativistic expressions () and
minimizing it with respect tomH , the temperature of the system in the form of equation (35) isT∗(m∗

HNH), where
the mass ofNH Hagedorn thermostatsm∗

H is related to the solutionm+
H of equation (38) asm∗

H = m+
H/NH . Since the

original single thermostat of massm+
H was assumed to be heavy, it followsT∗(m∗

HNH) = T∗(m+
H) → TH . A more

careful study (see also [9]) using an exact expression for the microcanonical partition ofNH Hagedorn thermostats
of the same massmH gives the same result, ifmH ≫ mo. A generalization of these statements to the case ofNH
heavy Hagedorn thermostats of different masses also leads to the same result. Thus, splitting a single heavy Hagedorn
thermostat into an arbitrary number of heavy resonances (heavier thanmo) does not change the temperature of the
system.

THE BAG SURFACE

The bag expressions reported above contain only volume terms. Given the finite size of the bags that are typically
considered (resonances), it may be of interest to consider finite size effects and their role in the description of the bags
properties. The simplest generalization, assuming that the bags are leptodermous (which is supported by the short
range of hadron-hadron interaction and by the saturating properties implicit in Eqs. (6) and (7)), is the introduction of
surface energy. This can be done phenomenologically by introducing aV

2
3 term in the free energy. Then the pressure

of a spherical bag can be written as

p =
σ
3

T4 − B − 2
3

as(T)V− 1
3 =

σ
3

T4 − B − 2
3

as(T)

α R
, (44)

whereas(T) is the temperature dependent surface energy coefficient,R is the bag radius andα ≡
[

4π
3

]
1
3 . Using the

thermodynamic identities for the free energyF and entropyS

p = −
(

∂F
∂V

)

T
, and S= −

(

∂F
∂T

)

V
, (45)



FIGURE 2. A typical behavior of the system’s temperature as the function of the number of Boltzmann particles
NB for a = 3 anda = 0 for the same value of the total energyE = 30mB. Due to the thermostatic properties of a
Hagedorn resonance the system’s temperature is nearly constant up to the kinematically allowed valueNkin

B given
by (42).

one can find all thermodynamic functions as follows

F = −
[σ

3
T4 − B

]

V + as(T) V
2
3 , (46)

S =
4σ
3

T3V − das(T)

d T
V

2
3 , (47)

E ≡ εV =
[

σT4 + B
]

V +

[

as(T) − das(T)

d T

]

V
2
3 . (48)

In evaluating the expression (46) we fixed the integration constant (an arbitrary function ofT) to zero because the free
energy should vanish for the bag of zero volume.

While the magnitude ofas(T) is unknown, there are surprising consequences foras(T) > 0. In Eq. (44) the surface
term appears as an additionalpressure to the bag pressure. Therefore, for a bag in a vacuumthe total pressure should
be zero, i.e.p = 0, and, consequently, the bag temperature acquires volume dependence:

T(R) =

[

3
σ

(

B+
2as(T)

3α R

)]
1
4

. (49)

WhenR is large we recover the previous bag temperature and the associated physics. WhenRbecomes small, however,
the bag temperature increases! The implications of this dependence are strange indeed. The first is the peculiar behavior
of the bag’s heat capacity. The second is the stability of thegas of bags (or lack thereof). The third is the signature of
a bag’s decay.



FIGURE 3. A schematic volume dependence of the bag temperature (left panel), bag energy (middle panel) and its
heat capacity (right panel) for the temperature independent surface tensionas(T) = ao > 0. The left and right panels
show the volume dependence of the right hand side of Eqs. (49)and (48), respectively. The resulting heat capacity
of the bag is negative (right panel). The parameterTo is defined by the bag constant as follows:To = [3B/σ ]1/4 .

HEAT CAPACITY

In the standard bag model the heat capacity is infinite: no matter how much energy is fed to the bag, its temperature
remains constant [9, 10]. The only effect is to make the bag larger. This is completely consistent with what we observe
in isobaric phase transitions in ordinary matter. Here the isobaric condition is produced by the bag constant, and the
phase transition is from hadronic to partonic phase.

Including surface effects, shows that the more energy is putinto the bag, the lower its temperature becomes: i.e.
the bag’s heat capacity is negative. To illustrate how the negative heat capacity of the bag appears, let us consider a
temperature independent surface tension:as(T) = ao > 0. For this case, Eq. (49) shows that the bag temperature is
decreasing function of its volume, whereas, according to Eq. (48), the energy of the bag is an increasing function of the
bag volume. Therefore, the bag’s heat capacity, defined as∂E/∂T, is negative. This is shown schematically in Fig. 3.

For a formal analysis of the heat capacity of the bag it is necessary to use Eqs. (45) and (47). From these equations
one can find the heat capacity of the bag at constant pressureCp and at constant volumeCV as:

Cp ≡ T

(

∂S
∂T

)

p
= CV − 3TV

4
3

2as(T)

[

4σT3− 2

V
1
3

d as

d T

]2

, (50)

CV ≡ T

(

∂S
∂T

)

V
= 4σ T3V − T V

2
3

d2 as

d T2 . (51)

In evaluating the expression forCp we used an explicit form of the derivative

(

∂V
∂T

)

p
≡ −

(

∂ p
∂T

)

V

(

∂ p
∂V

)−1

T
=

− 3V
4
3

2as(T)

[

4σT3− 2

V
1
3

d as

d T

]

. (52)

From Eqs. (50) and (51) it is clearly seen that for anyT whereas(T) ≥ 0 there may exist a range of parameters
for which the heat capacityCp, corresponding to the bag equilibrium in vacuum, is negative. This leads to a “convex
intruder ” in the entropy or an unusual behavior of its secondderivative:

(

∂ 2S
∂E2

)

p=0
= − 1

T2Cp
, (53)



FIGURE 4. Left panel: The bag temperatureTH as a graphical solution of Eq. (55) for the linearT dependence of
the bag surface tension. The left hand side of Eq. (55) is shown by a bi-quadratic parabolaσT4

H and its right hand
side is depicted by the straight lines for different values of the bag volumeV. The solution of Eq. (55) is found as
an intersection point between the parabola and the straightline.
Right panel: Shows schematically the range of available temperatures ofthe bag forT independent (red curve)
and for the linearT dependent (blue curve) surface tension of the bag. See text for the details.

which becomes positive for this range of parameters.
In the literature on this subject it is argued [39, 40, 41] that all small systems (comparable in size with the range of

the prevailing force) should show this effect. However, we stress that a convex intruder in the bag model with surface
tension exists not for small systems, but for large ones and does not disappear in thermodynamic limit. This behavior
can be verified by examining the decay products of heavy resonances: heavier resonances should decay into light
hadrons of a lower temperature (but never lower thanT(R= ∞)).

Let us now demonstrate the appearance of a convex intruder ina few simple cases. First we consider the case of

constant surface tension, i.e.as(T) = ao > 0, in more detail. Substitutingao into Eq. (52), one obtains that
(

∂V
∂T

)

p
< 0.

Since the heat capacity atp = 0 is defined asCp ≡
(

∂E
∂V

)

p=0

(

∂V
∂T

)

p=0
, its sign is opposite to the sign of the derivative

(

∂E
∂V

)

p=0
, which can be found from the expression for the energy of the bag:

E

∣

∣

∣

∣

p=0
= 4BV + 3aoV

2
3 ⇒

(

∂E
∂V

)

p=0
= 4B +

2ao

V
1
3

> 0. (54)

Thus, in the case of a constant surface tension the heat capacity at p = 0 is negative which corresponds to a convex
intruder.

Now we consider a surface tension with a linearT dependence in a spirit of the Fisher droplet model [33] or
using a more elaborate approach of the recently solved “Hills and Dales Model” for surface deformations [34, 35]:
as(T) = co

(Tc−T)
Tc

, which is defined for the temperatures not above the criticaltemperatureTc.

Introducing the notationB≡ σ
3 T4

o , one can rewrite the equilibrium condition of the bagp(TH) = 0 as follows:

σT4
H = σT4

o + 2co
Tc−TH

TcV
1
3

, (55)

which should be solved for the bag temperatureTH(V).
For positive values ofTH the left hand side of Eq. (55) is a monotonically increasing function ofTH , whereas its

right hand side is a monotonically decreasing function ofTH (see the left panel of Fig. 4). Therefore, there can exist a
single intersection point of these two functions for any positive value of bag volumeV. Using Eq. (55), one can show
that the inequalityTH ≤ Tc is always fulfilled, ifTc > To. Moreover, one can also show that the allowed interval of



the bag temperatures is betweenTo andTc with limiting casesTH(V → 0) → Tc andTH(V → ∞) → To (see the right
panel of Fig. 4). Similarly from Eq. (52) one finds that the bagtemperature decreases, while bag volume grows, i.e.
(

∂V
∂T

)

p
< 0 for anyV and anyTH ≤ Tc. Since the range of allowed bag temperatures is bound between To andTc, then

from Eq. (50) one can immediately see that for anyTH ≤ Tc the heat capacity of the bag atp = 0 is negative for large
volumes. Thus, in the case of a linearT dependence of the surface tension of the bag the convex intruder exists for
large volumes of the bag. In fact, this proves the following statement:if the surface tension as(T) ≥ 0 is a regular

function of T thatd as
d T ≤ 0 and

∣

∣

∣

d2 as
d T2

∣

∣

∣
is finite provided that the solution T(V) of Eq. (49) does not vanish in the limit

V → ∞, then in this limit the heat capacity at constant p= 0 is negative and sign Cp = sign
(

∂V
∂T

)

p
< 0.

STABILITY OF A GAS OF BAGS

A gas of resonances (bags) is frequently considered either in equilibrium or in transport problems. In our previous
papers [9, 10] (see also preceding sections) we have shown that an ordinary bag (no surface energy) is nearly indifferent
to fragmentation into smaller bags. In fact, under rather general conditions it appears that there is a mild tendency for
a gas of bags to collapse into a single one. We show now that theintroduction of the surface leads to an even stranger
tendency for a gas of bags toward collapse.

Let us assume an arbitrary mass distribution in a gas of bags,and for simplicity, let us assume that the gas is confined
in a fixed volume with its decay products (say pions). The gas cannot be isothermal since the smaller bags have larger
temperature than the big ones. Thus the smaller bags evaporate first and their evaporation products are absorbed by the
larger bags until only one remains. It may be argued that isothermicity can be achieved by having all the bags to be of
the same size. But this situation is clearly unstable. Any small perturbation in size will lead to a catastrophic collapse
of all bags into a single one.

DECAY OF A BAG

A hot bag, unless constrained by conserved quantities, mustdecay. As it decays, the instantaneous spectrum of the
decay products indicates the bag’s instantaneous temperature. Without surface effects the bag temperature is constant
and the overall spectrum and the instantaneous spectrum is the same.

With the surface effects, as the bag decays and becomes smaller, its temperature increases. Therefore the overall
spectrum integrated over the overall decay must differ fromthe instantaneous spectrum associated with each tempera-
ture. The shape deviation of the overall spectrum from that of an instantaneous spectrum at fixed temperature may be
an interesting observable to characterize both the effect and the magnitude of the surface energy and its temperature
dependence. It is amusing to notice the similarities with a black hole and its temperature as it decays through the
Hawking radiation.

CONCLUSIONS
In Refs. [9, 10] we generalized the SBM results [22] to systems of finite energy by showing explicitly that even a
single resonance with the Hagedorn mass spectrum degeneracy, i.e.a Hagedorn thermostat,keeps an almost constant
temperature close toTH for any number of Boltzmann particles 3< NB ≤ Nkin

B . For the high energy limitE ≫ mo
this means that a single Hagedorn resonance defines the temperature of the system to be only slightly different from
TH until the energy of the Hagedorn thermostat is almost negligible compared toE. In contrast to the grand canonical
formulation of the original SBM [22], in the presence of a Hagedorn thermostat the temperatureTH can be reached at
any energy density.

The thermostatic nature of a Hagedorn system obviously explains the ubiquity of both the inverse slopes of measured
transverse mass spectra [13] and hadronization temperature found in numerical simulations of hadrons created in
elementary particle collisions at high energies [19, 11, 24]. By a direct evaluation of the microcanonical partition
we showed that in the presence of a single Hagedorn thermostat the energy spectra of particles become exponential
with no additional assumptions, e.g.phase space dominance[25] or string tension fluctuations[26]. Also the limiting
temperature found in the URQMD calculations made in a finite box [27] can be explained by the effect of the Hagedorn
thermostat. We expect that, if the string parametrization of the URQMD in a box [27] was done microcanonically
instead of grand canonically, the same behavior would be found.

The Hagedorn thermostat model generalizes the statisticalhadronization model which successfully describes the
particle multiplicities in nucleus-nucleus and elementary collisions [19, 11, 24]. The statistical hadronization model



accounts for the decay of heavy resonances (clusters in terms of Refs. [19, 11, 24]) only and does not consider the
additional particles, e.g. light hadrons, free quarks and gluons, or other heavy resonances. As we showed, the splitting
of a single heavy Hagedorn resonance into several does not change the temperature of the system. This finding justifies
the main assumption of the canonical formulation of the statistical hadronization model [19] that smaller clusters may
be reduced to a single large cluster. Also our approach naturally explains why a sophisticated transport model [28],
which treats the hadronic reactions microscopically, leads to the thermal equilibration at the Hagedorn temperatureTH

and to a chemical composition of hadrons given by the equilibrium values of particle concentrations. Thus, recalling
the MIT Bag model interpretation of the Hagedorn mass spectrum [7, 8], we conclude that quark gluon matter confined
in heavy resonances (hadronic bags) controls the temperature of surrounding particles close toTH , and, therefore, this
temperature can be considered as a coexistence temperaturefor confined color matter and hadrons. Moreover, as we
showed, the emergence of a coexistence temperature does notrequire the actual deconfinement of the color degrees
of freedom, which, in terms of the Gas of Bags Model [29], is equivalent to the formation of the infinitely large and
infinitely heavy hadronic bag.

Within the framework of the Hagedorn thermostat model we found that even for a single Hagedorn thermostat and
a > 3

2 the system’s temperatureT = T∗(m+
H) as a function ofNB remains almost constant forNB < Nkin

B , reaches a
maximum atNkin

B and rapidly decreases forNB > Nkin
B (see Fig. 1). Fora< 3

2 the temperature has a plateauT = T∗(m+
H)

for NB < Nkin
B , and rapidly decreases forNB > Nkin

B . If such characteristic behavior of the hadronization temperature or
the hadronic inverse slopes can be measured as a function of event multiplicity, it may be possible to experimentally
determine the value ofa. For quantitative predictions it is necessary to include more hadronic species into the model,
but this will not change our result.

If we apply the Hagedorn thermostat model to elementary particle collisions at high energy, then, as shown above,
the temperature of created particles will be defined by the most probable mass of the Hagedorn thermostat. If the
most probable resonance mass grows with the energy of collision, then the hadronization temperature should decrease
(increase) toTH for a > 3

2 (a < 3
2). Such a decrease is observed in reactions of elementary particles at high energies,

see Table 1 in Ref. [24].
Further we discussed the effects of the surface energy on theproperties of a bag (heavy resonance) in vacuum. We

showed that in the presence of non-zero surface tension the temperature of the bag (and any system in thermal contact
it) acquires a volume dependence, so that smaller bags are hotter. The temperature of large bags cannot be smaller than
the Hagedron temperature. Under not too restrictive conditions we found that the heat capacity of large bags at zero
pressure is negative, i.e. such bags have abnormal behaviorof the second derivative of entropy with respect to energy.
These unusual properties lead to an instability of any number of bags other than one. We argued that the temperature
of the decay products of the evaporating bag should grow during the evaporation process, which, hopefully, can be
observed.

In order to apply these results in a more physical fashion to the quark gluon plasma formation in relativistic nucleus-
nucleus collisions (where the excluded volume effects are known to be important [30, 29, 31, 32, 36, 37] for all
hadrons) the eigen volumes of all particles should be incorporated into the model. For pions this should be done in
relativistic fashion [38]. Also the effect of finite width ofHagedorn resonances may be important [5] and should be
studied.

REFERENCES

1. R. Hagedorn, Suppl. Nuovo Cimento3, 147 (1965).
2. R. Hagedorn and J. Ranft, Suppl. Nuovo Cimento6, 169 (1968).
3. C. J. Hamer and S. C. Frautschi, Phys. Rev.D 4, 2125 (1971).
4. more references can be found in J. Letessier, J. Rafelski and A. Tounsi, Phys. Lett.B 328, 499 (1994).
5. D. B. Blaschke and K. A. Bugaev, arXiv:nucl-th/0311021; Prog. Part. Nucl. Phys.53, 197 (2004).
6. A. Chodoset. al., Phys. Rev.D 9, 3471 (1974).
7. J. I. Kapusta, Phys. Rev.D 10, 2444 (1981).
8. J. I. Kapusta, Nucl. Phys.B 196, 1 (1982).
9. L. G. Moretto, K. A. Bugaev, J. B. Elliott and L. Phair, arXiv:nucl-th/0504010.
10. K. A. Bugaev, J. B. Elliott, L. G. Moretto and L. Phair, arXiv:hep-ph/0504011.
11. F. Becattini and L. Ferroni, Acta Phys. Polon.B 35, 2007 (2004).
12. T. Alexopouloset al, Phys. Lett.B, 43 528 (2002).
13. M. Kliemant, B. Lungwitz and M. Gazdzicki, Phys. Rev.C 69, 044903 (2004).
14. F. Karsch, Nucl. Phys. Proc. Suppl.83, 14 (2000).

http://arxiv.org/abs/nucl-th/0311021
http://arxiv.org/abs/nucl-th/0504010
http://arxiv.org/abs/hep-ph/0504011


15. K. A. Bugaev, Nucl. Phys.A 606, 559 (1996); K. A. Bugaev and M. I. Gorenstein, arXiv:nucl-th/9903072.
16. K. A. Bugaev, M. I. Gorenstein and W. Greiner, J. of Phys.G 25, 2147 (1999); Heavy Ion Phys.10, 333 (1999).
17. L. van Hove, Z. Phys.C 21, 93 (1983); M. Gyulassyet. al.,Nucl. Phys.B 237, 477 (1984); K. A. Bugaev and M. I. Gorenstein,

J. of Phys.G 13, 1231 (1986).
18. K. A. Bugaev, M. I. Gorenstein and V. I. Zhdanov, Z. Phys.C 39, 365 (1988); K. A. Bugaev and M. I. Gorenstein, Z. Phys.C

43, 261 (1989); K. A. Bugaevet. al.,Phys. Rev.D 40, 2903 (1989),
19. F. Becattini and G. Passaleva, Eur. Phys. J.C 23, 551 (2002).
20. C. Greineret. al.,arXiv:hep-ph/0412095.
21. W. Broniowski, W. Florkowski and L. Y. Glozman, arXiv:hep-ph/0407290.
22. C. J. Hamer and S. C. Frautschi, Phys. Rev.D 4, 2125 (1971).
23. R. K. Pathria, “Statistical Mechanics”, Pergamon Press, 1972, Oxford.
24. F. Becattini and L. Ferroni, arXiv:hep-ph/0407117.
25. D. H. Rischke, Nucl. Phys.A 698, 153 (2002); J. Hormuzdiar S. H. D. Hsu and G. Mahlon, Int. J. Mod. Phys.E 12, 649

(2003).
26. A. Bialas, Phys. Lett.B 466, 301 (1999); W. Florkowski, Acta. Phys. Polon.B 35, 799 (2004).
27. M. Belkacemet al, Phys. Rev.C 58, 1727 (1998).
28. S. Pal and P. Danielewicz, arXiv:nucl-th/0505049.
29. M. I. Gorenstein, V. K. Petrov and G. M. Zinovjev, Phys. Lett. B 106, 327 (1981).
30. R. Hagedorn and J. Rafelski, Phys. Lett.B 97 , 136 (1980).
31. P. Braun–Munzinger, I. Heppe and J. Stachel, Phys. Lett.B 465, 15 (1999);
32. G. D. Yen and M. I. Gorenstein, Phys. Rev.C 59, 2788 (1999);
33. M. E. Fisher, Physics3, 255 (1967).
34. K. A. Bugaev, L. Phair and J. B. Elliott, arXiv:nucl-th/0406034 (to appear in PRE).
35. K. A. Bugaev and J. B. Elliott, arXiv:nucl-th/0501080.
36. F. Becattini, J. Cleymans, A. Keranen, E. Suhonen and K. Redlich, Phys. Rev.C 64, 024901 (2001); G. Zeebet al.,

arXiv:nucl-th/0209011.
37. P. Braun–Munzingeret al., Phys. Lett.B 518, 41 (2001); F. Becattini, J. Phys.G 28, 2041 (2002).
38. K. A. Bugaevet al., Phys. LettB 485, 121 (2000).
39. see D. H. E. Gross, Phys. Rep.279, 119 (1997); P. Chomaz, M. Colonna and J. Randrup, Phys. Rep.389, 263 (2004) and

references therein.
40. L. G. Moretto, J. B. Elliott, L. Phair and G. J. Wozniak, Phys. Rev. C66, 041601 (2002).
41. L. G. Moretto, J. B. Elliott and L. Phair, Phys. Rev. C68, 061602 (2003).

http://arxiv.org/abs/nucl-th/9903072
http://arxiv.org/abs/hep-ph/0412095
http://arxiv.org/abs/hep-ph/0407290
http://arxiv.org/abs/hep-ph/0407117
http://arxiv.org/abs/nucl-th/0505049
http://arxiv.org/abs/nucl-th/0406034
http://arxiv.org/abs/nucl-th/0501080
http://arxiv.org/abs/nucl-th/0209011

	Introduction
	Harmonic Oscillator Coupled to H
	An ideal vapor coupled to H
	H as a radiant bag
	Fragmentation of H
	Intermediate Conclusions
	Generalization to a Complete Hagedorn Spectrum
	The Role of the Mass Cut-off
	The Bag Surface
	Heat Capacity
	Stability of a Gas of Bags
	Decay of a Bag
	Conclusions

