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Abstract. A systems# with a Hagedorn-like mass spectrum imparts its unique teatpeeT ,» to any other system coupled
to it. An % system radiates particles in preexisting physical and ate#requilibrium. These particles form a saturated
vapor at temperaturé,». This coexistence describes a first order phase transiionz’ system is nearly indifferent to
fragmentation into smallef? systems. A lower mass cut-off in the spectrum does not sigmifiy alter the general picture.
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elementary particle collisions at high energies and leambine experimental predictions.
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INTRODUCTION

A systemA with energyE and degeneracy
pPa(E) O exp(kaE) )

while seemingly having a partition function of the form
Z(T) = [ pa(E)exp(~E/T) dE @

for all temperature¥ < 1/ka in fact admits only onéemperaturd = Ty = 1/ka and it imparts that temperature to
anysystem coupled to it.

The partition function of EqL{2) implies that an externarmostaB which, by definition hapg(E) U exp(—kgE),
can impart its temperatufs = 1/kg to the systenA. This is not so, as can be seen by considering the generating
micro-canonical partition

P(x) = pa(E—x)ps(x) =exp(ka[E — x]) exp(ksX)
B E—x X 3
= exp| | exp| - 3)
The most probable partition is given by
oP(x) 11
ox _O_kA_kB_TA Ts @

But this is hardly possible since in genefal# Tg: two thermostats can never be at equilibrium unless thegtatee
same temperature.

This preamble is motivated by the fact that the empiricalrbait mass spectra (Hagedorn spectra [1, 2]), the
Statistical Bootstrap Model (SBM)I[3] 4, 5] and the MIT bagaderb|6] have a degeneracy whose leading term is
of the form of Eq.[(L). It is the aim of this paper to explore ip@dagogical manner the implications of such a
spectrum, making only passing references to the more conppigsical situations occurring in particle-particle and
nucleus-nucleus collisions.

Hagedorn noted that the hadronic mass spectrum (leveltgiehais the asymptoticif — o) form

P (M) ~ exp(m/T.) (5)



wherem s the mass of the hadron in question ang is the temperature associated with the mass spectiurn [1, 2].
The question of the mass range over whldh (5) is valid isustitler discussion|[4] 5].

The M.1.T. bag model[6] of partonic matter reproduces tledwior via a constant pressiBef a “bag” of partonic
matter [71B]. The pressugginside a bag at equilibrium without additional conservedrtities is

L

whereg is the number of partonic degrees of freedom. The bag carfsta@es a constant temperatdigon the bag.
Similarly, the enthalpy density of the bag

H o 4
=—==_T3+B 7
E=y =30 BT (7)
is constant. Herél is the enthalpy an¥l is the volume of the bag. Thus, an injection of an arbitrarpant of energy
leads to an isothermal, isobaric expansion of the bag anbabentropySis proportional taH:

oQ HdH H
S_/T_o T T8’ ®)
wheredQ is the change in heat of the bag. The bag’s spectrum (levsitygis thenp = exp(S) given by Eq.[5) with
Tg =T, andH =m.
Following our recent results![9,10], we show here that aesyst# possessing a Hagedorn-like spectrum,
characterized by an entropy of the foilth (8), not only has gumimicrocanonical temperature

—1

E = TB ’ (9)

but also imparts this same temperature to any other systamhich .7 is coupled. In the language of standard
thermodynamics?Z is a perfect thermostat.

The property of a perfect thermostat is well known. For ins& it is indifferent to the transfer of any portion of
its energy to any parcel within itself, no matter how smailother words, it is at the limit of phase stability and its
internal fluctuations of the energy density are maximal.

HARMONIC OSCILLATOR COUPLED TO #

In order to demonstrate the thermostatic behavior of a Hagedystem, let us begin by coupling” to a one
dimensional harmonic oscillator and use a microcanonieatient. The unnormalized probabilRye) for finding
an excitation energy in the harmonic oscillator out of the system’s total enegg

P(e) ~ pu(E—¢€)pPosd€)

= exp(v> —p;f(E)exp<—%>- (10)

Recall that for a one dimensional harmonic oscillabggc is a constant. The energy spectrum of the oscillator is
canonical up to the upper limityax = E with an inverse slope (temperature)iof independent oE. The mean value
of the energy of the oscillator is given by

— E/T»

E=Ty|l-——F——|. 11

| el -

Thus in the limit thatE — o: € — T, i.e. no temperature other tha@}, is admitted. In the standard language
of statistical mechanics this example means that a one dilorea harmonic oscillator can be used as an ideal
thermometer.



AN IDEAL VAPOR COUPLED TO 7

For a more physically relevant example, let us consider amafiN > 1 non-interacting Boltzmann particles of mass
mg and degeneraays coupled tasZ. The microcanonical level density of the vapor with kinetiergye is

VNN mgey 3N
Pvaporl €) = W (E) ; (12)

whereV is is the volume. The microcanonical partition of the totadtem is

Potal(E,€) = pr(E—€)Pvapol€)
3 —mgN—¢
_ VVg§ (mBE)zN Eane

Nt (3N)! 23

(13)
Just as with the harmonic oscillator, the distribution @& tapor is exactly canonical up &ax = E, if the particles
are independently present, &f.x = E — mN, if the particles are generated b¥. In either case, the temperature of
the vapor is alway3 .

The maximum oftal(E, €) with respect tee gives the most probable kinetic energy per particle as

aptotaI(EaS) 3N 1 € 3
—_— 2 =— —— =0 — =T, 14
de 26 Ty - N2 (14)

provided thatt > mgN + %NT%. (FormgN < E < mgN + %NT}{’, the most probable value of the kinetic energy
per particle isg = % —mg < %ij; forE<mgN, § = 0.) AgainT, is the sole temperature characterizing the
distribution up to the microcanonical cut-off, which maydi®ove or below the maximum of the distribution since the
form of potal(E, €) is independent oE.

The maximum ofeal(E, €) with respect tdN at fixedV is given by

3
dInpoa(E, ) Mg V (mgTr\2|
TN ——@—F'n gBN o =0, (15)
where Eq.[[T¥) was used fer Thus the most probable particle density of the vapor ispedeent o¥/:
3
v—QB( o ) e v =ny. (16)

Equation [Ib) demonstrates that not only# a perfect thermostat but also a perfect particle reserkairticles

of different masan will be in chemical equilibrium with each other. At equilibm, particles are emitted from?’
and form a saturated vapor at coexistence withat temperaturd . This describes a first order phase transition
(hadronic to partonic). Coexistence occurs at a single ézatpre fixed by the bag pressure.

These results explain the common value of: the hadronizé&imperatures obtained within the statistical hadroniza-
tion model [11]; the inverse slopes of the transverse maastigpof hadrons observed in high energy elementary par-
ticle collisions [12] 133]; and the transition temperatueani lattice QCD calculations for low baryonic density![14].
For further discussion see [10].

2 AS A RADIANT BAG

Let us assume tha¥’ is a bag thick enough to absorb any given particle of the vapiiing it. Then, detailed balance
requires that on averag#’ radiates back the same particle. Under these conditiotislparcan be considered to be
effectively emitted from the surface g#. Thus the relevant fluxes do not depend in any way upon the sineture
of 5.

In fact, the results given in equatioisi14) ahd (16) showttiesaturated vapor concentration depends only upon
mg and T, as long as’# is present. A decrease in the voluiMedoes not increase the vapor concentration, but



induces a condensation of the corresponding amount of goertgf the vapor and inte7’. An increase iV keeps
the vapor concentration constant via evaporation of theespponding amount of energy out.¢f and into the vapor.
This is reminiscent of liquid-vapor equilibrium at fixed tperature, except that here coexistence occurs at a single
temperaturd ,-, rather than over a range of temperatures as in ordinarysfluid

The bag wall is Janus faced: one side faces the partonic yeortt] aside from conserved charges, radiates a partonic
black body radiation responsible for balancing the bagsunes the other side faces the hadronic world and radiates
a hadronic black body radiation, mostly pions. Both sidethefbag wall are at the temperaturg-. It is tempting
to attribute most, if not all, of the hadronic and partoniogerties to the wall itself, possibly even the capability to
enforce conservation laws globally (quantum number cotidty). Despite the fact that this wall is an insurmoun&bl
horizon, with hadronic measurements such as bag size aldddiance we can infer some properties of the partonic
world, e.g. the number of degrees of freedoni [12].

We can estimate an upper limit for the emission time usingptitevard energy flux of particles radiated from the
bag. At equilibrium the in-going and out-going fluxes mustthe same, thus the outward flux of particles in the
nonrelativistic approximation using EG.{16) is

¢n,},,:”'—”( me ) LAy (17)

4 \mg+ 2T, mg
Using the technique developed in[15} 16], one finds the grfrg ¢, and momentum fluxag as

1
¢e, ~ (M8 +2T)dn, . Prad= én;ﬂ%- (18)

The pressur@rag exerted on the bag by its radiation can be compared to thasitbag pressure in EQl(6): for pions
Prad ~ 0.02B. The timer for the bag to dissolve into its own radiation is approxirhate

3nexp(%) Eo
~ Os(METH)RS

whereRy is the initial bag radius anf is the initial bag total energy.

The fluxes written in Eqs[{17) and{18) (particle or energy gt surface area) are integrated over an assumed
spherical bag to give the result in EG_119). However, beeafshe lack of surface tension, the bag’s maximum
entropy corresponds to either an elongated (cylinder) attefied shape (disc). Thus, Hg.(19) should be interpreted
as an upper limit. More detailed studies of hadron emissiomfbags concerning hydrodynamic shock waves and
freeze out shocks can be found elsewherkl[15, 16, 17, 18].

The decoupling between the vapor concentrationrag@ndT ;» occurs whensZ has completely evaporated (i.e.
whenE —mgN — 3N T, = 0) at a volume of

(19)

1 E
4 — . (20)
Ny [me+ 35T
The disappearance o allows the vapor concentration to decrease inversely ptigmally toV as
N [ PAYA
o 21
v v (21)

The temperature, however, remains fixed gt because of conservation of energy and particle number aijpve
Solid curves in Fig. 1 show this schematically.

The discussion above assumes that the Hagedorn spectrantdextown tan= 0. However, experimentally there
appears to be a lower cut off of the spectrunmat This modifies the above results as follows (for a detailelyais
see the section “Generalization to a Complete HagedorntSpe?).

For energieE —mgN — € > my andV < Vg the above results hold as written. However, if we increasesttiume
well beyondVy at which the Hagedorn spectrum is truncatedngtthe situation is slightly differentz” evaporates
until its mass isn. If the entire mass aof# is fully transformed into vapor particles as the volume @ased further,
then the excess particles temporarily increase the coratemt and permanently decrease the temperature. As the
volume increases further, the concentration changessalyeproportional t&/

Moy
N _ nijd‘f'@

VTV 22)



1.2

T/T,,

0.8

LB

o o

0.6
0.4
0.2

1111111111111111111111111

=
o

LN L L L L L L L

(N/V)in,,
o B~ ON OO

TT T[T T[T rrrroT

llllllllllllllll

2 14 16 18 2
VIV,

FIGURE 1. Typical behavior of the entire system’s temperaflirand concentratioN/V as the function of the
system’s volum® in the absence of restrictions (solid curve) and for a finiteoff atmg of the Hagedorn spectrum
(dashed curve).
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while the temperature remains constant at
N#Va

=—— =T, 23
nijd-f—% 7 (23)

Dashed curves in Fig. 1 show this schematically.

FRAGMENTATION OF .7

A question of interest is the stability 0% against fragmentation. If the translational degrees @&doen are neglected,
2 is indifferent to fragmentation into an arbitrary numberpairticles of arbitrary mass (within the constraints of
mass/energy conservation).

Let us now consider the case in which the mass of the vapacleants is allowed to be free. The system’s level
densitypiowal(E, €) is still given by Eq.[(IB). Using Eq4{IL4) add116), one fifusmost probable value of the system’s
level density apy.(E, €) ~ exp[S'], where the entropy iS* = E/T,, + N. Differentiatingpy; . (E, £) with respect
to mg and applying EqI{16) gives

N [

i.e. the last equality provides the maximum of level den&ityN £ 0. Since all the intrinsic statistical weights in
Pisa(E, €) are factored into a single?’, the system breaks into fragments with = 3T, except for one whose mass
is determined by mass/energy conservation.

01N pioal(E, €)

o @4)



Substituting the most probable value efand mg into the most probable value & one obtains the vapor

concentration .

2
N (%e) T3 (25)
The density of the vapor of nonrelativistic particles acgsithe form typical of the ultrarelativistic limit.

If the value of mass given by Ed_{24) does not exist, then thstrprobable value of level densipy;,(E, €)
corresponds to the maas which is nearest t(%'l'jf andN(m*) given by Eq.[[Ib). In terms of hadron spectroscopy
the value ofm* that maximizes the level densipy,.,(E, €) is the pion mass.

If 2# is required to fragment totally into a number of equal fragtee of massmy all endowed with their
translational degrees of freedom, then @gr=1)

E—¢
etz VYN

myerdN ety VN [my T, 3N
T = N!(%N)![Zn} TN [2,1} ; (26)

where in the last step we substituted the most probable wdltre kinetic energy[{14) and used the Stirling formula
for (%N)!. From Eg. [2b) it is seen that all the Hagedorn factors pskainto a single one with the-independent
argumeng&. Maximization of [Z6) with respect toy leads to

dinpr 3N
omy  2mu

=0, (27)

which is consistent witt\ = 1 andmy = E, namely a single Hagedorn particle with all the availablessna

This again illustrates the indifference g# toward fragmentation. Of course E§.114) gives directly thass
distribution of the Hagedorn fragments under the two comlit discussed above. These results justify the assumption
of the canonical formulation of the statistical hadronmatmodel that smaller clusters appear from a single large
cluster [18].

INTERMEDIATE CONCLUSIONS

A system.7’, with a Hagedorn-like mass spectrum, is a perfect thermasiz a perfect particle reservoir. Conse-
qguently, any system coupled & can have only the temperature.&f: T,,. This behavior may explain the common
value of: the hadronization temperatures obtained witkatistical models; the transition temperature from lattic
QCD calculations for low baryonic density; and the invelspss of the transverse mass spectra of hadrons (temper-
ature) observed in high energy elementary particle colisiand high energy nucleus-nucleus collisions (for detail
see [10]). The common temperature of the experimental spsaggest that the observed particles originate from an
J-like system.

The hadronic side af#’ radiates patrticles in preexisting physical and chemicailgium just as a black body
radiates photons in physical and chemical equilibirum (gare to Ref.l[20]). Particles emitted fros# form a
saturated vapor that coexists wi#f. This coexistence describes a first order phase transhiaarénic to partonic)
and occurs at a single temperature fixed by the bag pressat#’ Aystem is nearly indifferent to fragmentation into
smallersZ systems. A lower cut-off in the mass spectrum does not alteresults|[10].

GENERALIZATION TO A COMPLETE HAGEDORN SPECTRUM

To have a more realistic model we should consider a more doatetl Hagedorn mass spectrgn(my) =
expmy / T»|(me/my )2 for the resonance masses above the lower cut-offn, >> T, (ais a parameter discussed
below). Let us study the microcanonical ensembldlgBoltzmann point-like particles of masgs and degeneracy
gs, andNy hadronic point-like resonances of masg with a mass spectrumy (my) assuming thatm, > mg. A
recent analysis [21] suggests that the Hagedorn mass gpecan be established fox, < 2 GeV.

In the Statistical Bootstrap Model (SBM)_|22] and the MIT bagdel [7] it was found that fomy — o the
parametea < 3. For finite resonance masses the valua isfunknown, so it will be considered as a fixed parameter.



The microcanonical partition of the system, with voluvheotal energyE and zero total momentum, can be written
N

as follows
H Ng
V [H gr (M / dSQ)k [1oe / (d3p| < Z\ﬂ leng>7 (28)

where the quantitgt = &(my,Q;) (ejB = &g(mg, pj) ande(M,P) = VM2 + PZ) denotes the energy of the Hagedorn

(Boltzmann) particle with the 3-momentu@h (Bj)- In order to simplify the presentation of our idea, Hql (283ounts
for energy conservation only and neglects momentum coaserv

The microcanonical partitio_[R8) can be evaluated by thpldee transform in total enerdy [23]. Then the
momentum integrals i .(28) are factorized and can be peddramalytically. The inverse Laplace transform in the
conjugate variabld can be done analytically for the nonrelativistic and ubtativistic approximations of the one-
particle momentum distribution function

Ve
Na!

o 3
" 13 o AE(M,p) MI2 eMA - MR 1,
/LN [5°] Ca &) > (29)

(2m)3 2 e M MReA) < 1,

] deE
o= 0/ @2ny?

Since the formal steps of further evaluation are similartfoth cases, we discuss in detail the nonrelativistic limit
only, and later present the results for the other case. Theetativistic approximationiRgA ) > 1) for Eq. [2B) is
as follows

where the auxiliary integral is denoted as

(30)

N N
Van(m) 2mal? 1] [Vasfame)? 1] 7 g1
nr = 2 2 . kin : (31)
Ny ! Ng! (Q(NH +Ng) — 1)!

whereEy;, = E — myNy — mgNg is the kinetic energy of the system.

As shown below, the most realistic case corresponds to theefativistic treatment of the Hagedorn resonances
because the resulting temperature is much smaller thanrttasises. Therefore, it is sufficient to consider the ultra-
relativistic limit for the Boltzmann particles only. In thtase MIRegA) < 1) the equation{28) can be approximated
as

3 NH
3 Ny +2Ng)—1
VoH(m) 2mu]? 13| 7 g apte  gRMRe)

i N ! Ne!  (3(Nu+2Ng)—1)!"

(32)

where the kinetic energy does not include the rest enerdyedBbltzmann particles, i.&jn = E — myNy.

Within our assumptions the above results are general andbeamsed for any number of particles, provided
Ny + Ng > 2. It is instructive to consider first the simplest cage = 1. This formulation of the model, in which
a Hagedorn thermostat is always present, allows us to shedgroblem rigorously and provides us with a qualitative
picture forNy > 1. ForNy =1 andNg > 1 we treat the mass of Hagedorn thermosigtas a free parameter and
determine the value which maximizes the entropy of the sysiée solutionmy;, > 0 of the extremum condition

6|n Qnr(NH - 1) 1
ooy T

3(Ns+1
+ (G -aa - Fe =0 (33)

provides the maximum of the system’s entropy, if fis§ = iy, the second derivative is negative

& mj

The inequality[(3K) is a necessary condition of the maximfithe microcanonical partition. Postponing the analysis
of [34) till the next section, where we study it in more detaliét us assume for a moment that the inequdlify (34) is

-G -a)q - 3<2Ngk2+ml> < 0. (34)




satisfied. Then the extremum conditi@nl(33) defines the teatye of the system dNg + 1) nonrelativistic particles

* [ ok 2 Ekin ij

Thus, asy, — o it follows thatT*(n,) — T, while for finitemy; > T,» anda > 3 (a < 3) the temperature of the
system is slightly larger (smaller) than the Hagedorn teaipee, i.eT* > T, (T* < T,»). Formally, the temperature
of the system in equatiof{B5) may differ essentially frég for a light thermostat, i.e. famj; < T,,~. However, it is
assumed that the Hagedorn mass spectrum exists above 1bff @atssm, > T, thusm® > T .

THE ROLE OF THE MASS CUT-OFF

Now we study the effect of the mass cut-off of the Hagedorespm on the inequalityf{34) in more detail. FoK %
the condition[(3¥) is satisfied. Far> % the inequality[[3¥) is equivalent to the following ineqgali

2

m;
(@a—3) T*(my)

which means that a Hagedorn thermostat should be massiveacethto the kinetic energy of the system.
A more careful analysis shows that for a negative value oflfterminanDn; (N = Ng — %a)

> g (Ne+1) T*(my), (36)

Do = (E—meNs—2T, N)2—
4(a—3) T (E-mgNg) < O, (37)

equation[(3B) has two complex solutions, whiley = 0 there exists a single real solution Bf(33). Solving (37) fo
(E—mgNg), shows that foN > %a— 1,i.e.forNg > ‘5‘, a— 1 the inequalityl(37) does not hold abg; > 0. Therefore,

in what follows we will assume thaidg > %a— 1 and only analyze the cagk, > 0. For this case equatiofi{33) has
two real solutions B
m;=3[E-meNs—3 T,y N £ /Dy . (38)

Fora< %’ only m; solution is positive and corresponds to a maximum of the ac@nonical partitioy.
Fora > % both solutions of[{33) are positive, but omty, is @ maximum. From the two limiting cases:

5 (3-a)m for my~0, (39)
%ﬁ'::*:” ~ e for Byp~0, (40)

and the fact thalnﬁ obey the inequalities
0<my <m, <E—meNg, (41)

it is clear thaim{; = my, is a local minimum of the microcanonical partitiG,, while my;, = mﬁ is a local maximum
of the partitionQp,.
Using Eq. [3B) fomy}, it is clear that for any value afthe constraintn; > my, is equivalent to the inequality

T

mg + 3 T*(mo)

E—[72 — aT"(mo)

Ng < NEn= (42)

Thus, at fixed energk for all Ng < Né‘“ atmy, = my, there is a local maximum of the microcanonical partitidg

with the temperatur@ = T*(mﬁ). ForNg > N'éi” the maximum of the partitiof,,; cannot be reached due to the
cut-off constraint and, consequently, the most probaklke siorresponds 1oy = mp with T < T*(my) from Eq. [35).

In other words, folNg > N‘é'” the amount of energk is insufficient for the mass of the Hagedorn thermostat to be
above the cut-offn, and simultaneously maintain the temperature of the Boltumparticles according to EQ{35).
By assumption there is a single Hagedorn thermostat in theesy therefore, aSlig grows the temperature of the



system decreases frofif (mp) value. Thus, the equalitf_(12) defines the kinematical lfimitreaching the maximum
of the microcanonical partition.

To prove that the maximum of the microcanonical partitionat = my; is global it is sufficient to show that
the constrainm,ﬁ > M is not consistent with the conditiom; > me. Fora < % the maximum is global because
forO<my < mﬁ (my > m,ﬁ ) the partitionQn (N4 = 1,my) monotonically increases (decreases) wiih. For
a> % it is clear that the maximum aty = mf:l is local, if the state with massy = m, is more probable, i.e.
Qnr(Ng = 1,mp) > Qnr(Nw = 1,my;). Due to [41) this can occur, ify; > mo. Substituting Eq.[{38) into the last
inequality, shows that this inequality reduces to the ctiowliNg > N‘éi”. This contradicts the constraint; > mg in
the form of Eq.[4R). Thus, the maximum of the microcanongeatition is global.

To complete our consideration of the nonrelativistic catei$ express the partition () in terms of the temperature
@39). Applying the Stirling approximation to the factor(%I(NB +1) —1)! for N§™ > Ng >> 1 and reversing the integral
representation§{P9) anid{30) for=1/T*(m,), one finds

v/ 2+Q2 —E JZ e
V ga (myh) dBQ -V H IQ e (M) d®p - "B P
Qur(Ny = 1) = a / e T VgB/ e T | @3)
T*(my, (2m)3 Ng! (2m)3

This is just the grand canonical partition(@f + 1) Boltzmann particles with temperatufé(my;). If Ng > N§" > 1,

thenT*(my;) in @3) should be replaced bi(Ng) = %

Fig. 1 shows that foa > % the system’s temperatufle= T*(my;) as a function ofNg remains almost constant for
Ng < N§™, reaches a maximum BE"™ and rapidly decreases liRe= To(Ng) for Ng > NE". Fora < 3 the temperature
has a platealf = T*(my;) for Ng < N§", and rapidly decreases fblg > N§™ according tolo(Ns).

The same results are valid for the ultrarelativistic treatirof Boltzmann particles. Comparing the nonrelativistic
and ultrarelativistics expressions for the microcandrasition, i.e. equations () anf{32), respectively, onddithat
the derivation of the ultrarelativistic limit requires grthe substitutioiNg — 2Ng andmg/T_» — 0 in equationd{33 —
£3). Note that this substitution does not alter the expoesfsir the temperature of the system, i.e. the right hand side
of @9).

Finally, we show that for a heavy Hagedorn thermostgt £ m,) these results remain valid for a single Hagedorn
thermostat split intdNy pieces of the same mass. Substituting — myNy in the nonrelativistic expressions () and
minimizing it with respect tany, the temperature of the system in the form of equafiah (39)“isn;Nn ), where
the mass oNy Hagedorn thermostats}; is related to the solutiomy; of equation[[3B) asn; = m{,/Ny. Since the
original single thermostat of mass’; was assumed to be heavy, it folloWs (mj;Ny) = T*(mf;) — Tr. A more
careful study (see alsol[9]) using an exact expression miitrocanonical partition dfly Hagedorn thermostats
of the same massy, gives the same result, ifiy > m,. A generalization of these statements to the casipf
heavy Hagedorn thermostats of different masses also ledalls same result. Thus, splitting a single heavy Hagedorn
thermostat into an arbitrary number of heavy resonances/igaethanm,) does not change the temperature of the
system.

THE BAG SURFACE

The bag expressions reported above contain only volumeste@iwen the finite size of the bags that are typically
considered (resonances), it may be of interest to consiuts fiize effects and their role in the description of thesbag
properties. The simplest generalization, assuming theab#gs are leptodermous (which is supported by the short
range of hadron-hadron interaction and by the saturatiagepties implicit in Eqs[l6) and¥(7)), is the introductidn o
surface energy. This can be done phenomenologically bydntring a3 term in the free energy. Then the pressure
of a spherical bag can be written as

2 g

04 5 2 10, o 2a(T)
p= 3T B 3as(T)V = 3T B 3 aR’

(44)

1
whereag(T) is the temperature dependent surface energy coeffidReistthe bag radius and = [%’T} 3. Using the
thermodynamic identities for the free enefgyand entropys

oF JoF
o=~ (5v), ™ s (5), @)
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FIGURE 2. A typical behavior of the system’s temperature as the fonabf the number of Boltzmann particles

Ng for a= 3 anda = 0 for the same value of the total enerf§y= 30mg. Due to the thermostatic properties of a
Hagedorn resonance the system’s temperature is nearlyacong to the kinematically allowed valll)%'” given

by (@2).

one can find all thermodynamic functions as follows

F = [%T“ — BV + ayT) VS, (46)
4o das(T) 2

S = ?T3v - 57 V& (47)

E=ev = [oT*+B]V + {as(T) - ddas_(_'rl')} V3, (48)

In evaluating the expressidn{46) we fixed the integratiarstant (an arbitrary function df) to zero because the free
energy should vanish for the bag of zero volume.

While the magnitude adis(T) is unknown, there are surprising consequenceaddr) > 0. In Eq. [4%) the surface
term appears as an additioqaessure to the bag pressure. Therefore, for a bag in a vathwutotal pressure should
be zero, i.ep =0, and, consequently, the bag temperature acquires volependence:

ICHEI Gy )

o

WhenRis large we recover the previous bag temperature and theiatstphysics. WheR becomes small, however,
the bag temperature increases! The implications of thisdégnce are strange indeed. The firstis the peculiar behavio
of the bag’s heat capacity. The second is the stability ofyeeof bags (or lack thereof). The third is the signature of
a bag’s decay.
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FIGURE 3. A schematic volume dependence of the bag temperature éleép bag energy (middle panel) and its
heat capacity (right panel) for the temperature indepergigface tensioas(T) = a, > 0. The left and right panels
show the volume dependence of the right hand side of Egsaf#®48), respectively. The resulting heat capacity

of the bag is negative (right panel). The param@&tgs defined by the bag constant as folloWg:= [3 B/0]1/4.

HEAT CAPACITY

In the standard bag model the heat capacity is infinite: naenbbw much energy is fed to the bag, its temperature
remains constantl[9, 10]. The only effect is to make the bagelaThis is completely consistent with what we observe
in isobaric phase transitions in ordinary matter. Here slodaric condition is produced by the bag constant, and the
phase transition is from hadronic to partonic phase.

Including surface effects, shows that the more energy isntatthe bag, the lower its temperature becomes: i.e.
the bag’s heat capacity is negative. To illustrate how ttgatiee heat capacity of the bag appears, let us consider a
temperature independent surface tens&(ilT ) = a, > 0. For this case, Eq[T39) shows that the bag temperature is
decreasing function of its volume, whereas, according ta), the energy of the bag is an increasing function of the
bag volume. Therefore, the bag’s heat capacity, defin@Ea#T, is negative. This is shown schematically in Fig. 3.

For a formal analysis of the heat capacity of the bag it is s&mey to use Eqd_(#5) arld147). From these equations
one can find the heat capacity of the bag at constant preSguned at constant voluntg, as:

4 2
0S 3TV3 2 das]
Co=T[ )=, - 22 |4013- 2 25| 50
g <0T>p « 2as<T>{ viaT (50)
JSs 3 2d2a5
p— —_— - —_— 3—
CV_T(&'T)V 40TV — TVE . (51)

In evaluating the expression f@ we used an explicit form of the derivative

(7), = (), ),
at), = “\ar)y\av ),

4
Ve [40T3— 2 d—as]

2 |7 VA AT =

From Egs.[[A0) and{®1) it is clearly seen that for dnywhereag(T) > 0 there may exist a range of parameters
for which the heat capaci,, corresponding to the bag equilibrium in vacuum, is negafhhis leads to a “convex
intruder " in the entropy or an unusual behavior of its secoadvative:

RS 1
(ﬁ)p_oz © T2C,’ (53)
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FIGURE 4. Left panel: The bag temperatui® as a graphical solution of Eq.{55) for the linGadependence of
the bag surface tension. The left hand side of EG. (55) is shmna bi-quadratic parabotaT,{ and its right hand
side is depicted by the straight lines for different valugthe bag volumé/. The solution of Eq[{35) is found as
an intersection point between the parabola and the striight

Right panel: Shows schematically the range of available temperaturésedbag forT independent (red curve)
and for the lineall dependent (blue curve) surface tension of the bag. Seeotetttd details.

which becomes positive for this range of parameters.

In the literature on this subject it is arguedi[39, 140, 411 gdhsmall systems (comparable in size with the range of
the prevailing force) should show this effect. However, Wwess that a convex intruder in the bag model with surface
tension exists not for small systems, but for large ones aed dot disappear in thermodynamic limit. This behavior
can be verified by examining the decay products of heavy essms: heavier resonances should decay into light
hadrons of a lower temperature (but never lower théR = «)).

Let us now demonstrate the appearance of a convex intrugefaw simple cases. First we consider the case of

constant surface tension, ia&(T) = a, > 0, in more detail. Substitutina, into Eq. [52), one obtains th IS—T) . <0.

Since the heat capacity pt= 0 is defined a€p, = (3—5) o (g—\T/) o its sign is opposite to the sign of the derivative
p= p=

(3—5) oo which can be found from the expression for the energy of ttte b

E| —4BV + 3aVvi = (a—E) _ag+ 2% o, (54)
p=0 ov p=0 V3

Thus, in the case of a constant surface tension the heatiapap = 0 is negative which corresponds to a convex
intruder.
Now we consider a surface tension with a lindadependence in a spirit of the Fisher droplet model [33] or
using a more elaborate approach of the recently solveds'ldiid Dales Model” for surface deformatiohsl[34, 35]:
(Te—T)

as(T) = O which is defined for the temperatures not above the criteraperaturdy.

Introducing the notatioB = %Tg‘, one can rewrite the equilibrium condition of the ba@y ) = 0 as follows:
Te—Ti
0T} =oTd + 2co——", (55)
TcV3

which should be solved for the bag temperaflu€V).

For positive values oTy the left hand side of Eq[{H5) is a monotonically increasimgction of Ty, whereas its
right hand side is a monotonically decreasing functioip{see the left panel of Fig. 4). Therefore, there can exist a
single intersection point of these two functions for anyifiees value of bag volum& . Using Eg. [Bb), one can show
that the inequalityly < T¢ is always fulfilled, if T. > To. Moreover, one can also show that the allowed interval of



the bag temperatures is betweRnandT; with limiting casesTy(V — 0) — Te andTh(V — «) — T, (see the right
panel of Fig. 4). Similarly from EqL{%2) one finds that the bamperature decreases, while bag volume grows, i.e.

(g—¥) < 0 foranyV and anyTy < T. Since the range of allowed bag temperatures is bound beflyendT,, then
p
from Eq. [RD) one can immediately see that for dqy< T the heat capacity of the bagpt= 0 is negative for large

volumes. Thus, in the case of a lineardependence of the surface tension of the bag the convexartexists for
large volumes of the bag. In fact, this proves the followitefementif the surface tensiongT) > O is a regular

functionof T that‘(’j—ff‘rS <0and ‘ ?,zTaf is finite provided that the solution(V) of Eq. [4®) does not vanish in the limit

V — oo, then in this limit the heat capacity at constantD is negative and sign = sign(g—\T/) <0.
P

STABILITY OF A GASOF BAGS

A gas of resonances (bags) is frequently considered eithequilibrium or in transport problems. In our previous
papersi[9, 10] (see also preceding sections) we have shanarttordinary bag (no surface energy) is nearly indifferent
to fragmentation into smaller bags. In fact, under ratheregal conditions it appears that there is a mild tendency for
a gas of bags to collapse into a single one. We show now thattitegluction of the surface leads to an even stranger
tendency for a gas of bags toward collapse.

Let us assume an arbitrary mass distribution in a gas of bag<dor simplicity, let us assume that the gas is confined
in a fixed volume with its decay products (say pions). The gaot be isothermal since the smaller bags have larger
temperature than the big ones. Thus the smaller bags etapiosaand their evaporation products are absorbed by the
larger bags until only one remains. It may be argued thah&aticity can be achieved by having all the bags to be of
the same size. But this situation is clearly unstable. Anglbperturbation in size will lead to a catastrophic collaps
of all bags into a single one.

DECAY OF A BAG

A hot bag, unless constrained by conserved quantities, dacsty. As it decays, the instantaneous spectrum of the
decay products indicates the bag’s instantaneous tenuperaYithout surface effects the bag temperature is conhstan
and the overall spectrum and the instantaneous spectrima &ame.

With the surface effects, as the bag decays and becomesesnitaltemperature increases. Therefore the overall
spectrum integrated over the overall decay must differ filoeninstantaneous spectrum associated with each tempera-
ture. The shape deviation of the overall spectrum from thahanstantaneous spectrum at fixed temperature may be
an interesting observable to characterize both the effettlae magnitude of the surface energy and its temperature
dependence. It is amusing to notice the similarities witHaelhole and its temperature as it decays through the
Hawking radiation.

CONCLUSIONS

In Refs. [9,L.10] we generalized the SBM results! [22] to systerhfinite energy by showing explicitly that even a
single resonance with the Hagedorn mass spectrum deggniezag Hagedorn thermostakeeps an almost constant
temperature close td,, for any number of Boltzmann particles<3Ng < N‘é‘”. For the high energy limiE > m,
this means that a single Hagedorn resonance defines thertetnmeeof the system to be only slightly different from
T, until the energy of the Hagedorn thermostat is almost négiéigompared t&. In contrast to the grand canonical
formulation of the original SBM.[22], in the presence of a lddgrn thermostat the temperatdrg can be reached at
any energy density.

The thermostatic nature of a Hagedorn system obvioushamgthe ubiquity of both the inverse slopes of measured
transverse mass spectral[13] and hadronization temperfitund in numerical simulations of hadrons created in
elementary particle collisions at high energied |19,111, B4 a direct evaluation of the microcanonical partition
we showed that in the presence of a single Hagedorn therhibstanergy spectra of particles become exponential
with no additional assumptions, eghase space dominanf2] or string tension fluctuationf2€]. Also the limiting
temperature found in the URQMD calculations made in a findbe[27] can be explained by the effect of the Hagedorn
thermostat. We expect that, if the string parametrizatibthe URQMD in a box[27] was done microcanonically
instead of grand canonically, the same behavior would bedou

The Hagedorn thermostat model generalizes the statistamionization model which successfully describes the
particle multiplicities in nucleus-nucleus and elemeytollisions [19, 11| 24]. The statistical hadronizationdab



accounts for the decay of heavy resonances (clusters irstefiRefs. [19] 11, 24]) only and does not consider the
additional particles, e.g. light hadrons, free quarks dodrgs, or other heavy resonances. As we showed, the sglittin
of a single heavy Hagedorn resonance into several does angetine temperature of the system. This finding justifies
the main assumption of the canonical formulation of théstteal hadronization model [19] that smaller clusters may
be reduced to a single large cluster. Also our approach alstexplains why a sophisticated transport model [28],
which treats the hadronic reactions microscopically, $¢adhe thermal equilibration at the Hagedorn temperafire
and to a chemical composition of hadrons given by the equilibb values of particle concentrations. Thus, recalling
the MIT Bag model interpretation of the Hagedorn mass spet|i, 8], we conclude that quark gluon matter confined
in heavy resonances (hadronic bags) controls the tempe@ftaurrounding particles closegr, and, therefore, this
temperature can be considered as a coexistence tempdmataomfined color matter and hadrons. Moreover, as we
showed, the emergence of a coexistence temperature doesguae the actual deconfinement of the color degrees
of freedom, which, in terms of the Gas of Bags Model [29], isieglent to the formation of the infinitely large and
infinitely heavy hadronic bag.

Within the framework of the Hagedorn thermostat model wentbthat even for a single Hagedorn thermostat and
a> % the system’s temperatufie= T*(mﬁ) as a function oNg remains almost constant fdlg < Né‘“, reaches a

maximum aNg™ and rapidly decreases fbg > N§™ (see Fig. 1). Foa < 3 the temperature has a platébu- T*(my})

for Ng < N§™, and rapidly decreases fidg > NE™. If such characteristic behavior of the hadronization terafure or
the hadronic inverse slopes can be measured as a functieewmf multiplicity, it may be possible to experimentally
determine the value & For quantitative predictions it is necessary to includearadronic species into the model,
but this will not change our result.

If we apply the Hagedorn thermostat model to elementarygbartollisions at high energy, then, as shown above,
the temperature of created particles will be defined by thetmoobable mass of the Hagedorn thermostat. If the
most probable resonance mass grows with the energy ofioallidien the hadronization temperature should decrease
(increase) td ,» for a > % (a< %). Such a decrease is observed in reactions of elementaigipst high energies,
see Table 1 in Refl_[24].

Further we discussed the effects of the surface energy gortipeerties of a bag (heavy resonance) in vacuum. We
showed that in the presence of non-zero surface tensioemigdarature of the bag (and any system in thermal contact
it) acquires a volume dependence, so that smaller bags tes.fidve temperature of large bags cannot be smaller than
the Hagedron temperature. Under not too restrictive camditwe found that the heat capacity of large bags at zero
pressure is negative, i.e. such bags have abnormal belwdivier second derivative of entropy with respect to energy.
These unusual properties lead to an instability of any nurabbags other than one. We argued that the temperature
of the decay products of the evaporating bag should grownduhie evaporation process, which, hopefully, can be
observed.

In order to apply these results in a more physical fashiohéajuark gluon plasma formation in relativistic nucleus-
nucleus collisions (where the excluded volume effects ai@wk to be important [30, 29, BL,132,136, 37] for all
hadrons) the eigen volumes of all particles should be imm@ted into the model. For pions this should be done in
relativistic fashion|[38]. Also the effect of finite width ¢fagedorn resonances may be important [5] and should be
studied.
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