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Abstract. This chapter gives a historical review of the scaling of yields of particles emitted from excited nuclei. The focus

will be on what scaling is, what can be learned from scaling, the underlying theory of why one might expect particle yields to
scale, how experimental particle yields have been observed to scale, model systems where particle (cluster) yields do scale and
finally scaling observed in the particle yields of various low and medium energy nuclear reaction experiments. The chapter
begins with a basic introduction to scaling in the study of critical phenomena and then reviews, in detail, Fisher's model
which has all the aspects of scaling and can be directly applied to the counting of clusters, the most reliable measurement
accessible to the experimental study of nuclear reaction. Next this chapter gives a history of the various scalings observed
in nuclear reaction experiments and culminates with an estimate of the nuclear liquid-vapor phase boundary based upon
measured particle yields.
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INTRODUCTION

This chapter performs the modest task of covering seven decades worth of research on scaling in condensed matter
and nuclear physics [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23?7 24, 25
, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,
87, 89, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136,
137,138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149]. Inevitably, such and attempt will be incomplete and
every reader will have his or her own favorite reference(s) omitted. To that end we humbly submit this chapter as a
starting point for the motivated reader from which they can, perhaps, further their own understanding and research.
Scaling has been called “one of the three pillars of modern critical phenomena” [84]. The scaling hypothesis used in
the study of critical phenomena was independently developed by several scientists, including Widom, Domb, Hunter,
Kadanoff, Fisher, Patashinskii and Porkrovskii. See reference [8] for an authoritative review. The scaling hypothesis
has two categories of predictions, both of which have been verified experimentally for a variety of physical systems.
The first category is a set of relations callethling laws These scaling laws relate the critical exponemts3
andy which describe, for instance, the behavior of the the specific Beat{~*), density differences of the phases
(P — pv ~ €P) and isothermal compressibilityef ~ £~7) for fluid systems; specific heaE (~ e~%), magnetization
(M ~ £P) and isothermal susceptibility¢ ~ £~ 7)for magnetic systems or the singular part of the zeroth, first and
second moment of the cluster distribution percolating systems near a critical peintT. — T)/T; for physical
systems andp: — p)/pc for percolating systems). In all the systems mentioned here, and more, these exponents are
related via scaling law + 2 +y = 2.
The second category is a sortdsta collapsewhich is best explained in terms of a the Ising model. We may write
the equation of state as a functional relationship of the figrra M(H, ) whereH is the applied magnetic field. Since
M(H,¢) is a function of two variable, it can be graphically representeil as ¢ for differentH values. The scaling
hypothesis predicts that all of thebtvs ¢ curves can be “collapsed” onto a single curve provided that one plots not
M vs ¢ but rather a scaledl (M divided byH to some power as a function of a scate@t divided byH to some other
power). The predictions of the scaling hypothesis are supported by a wide range of experimental work with physical
systems as well as computational models [3, 5, 6, 8, 16, 17, 19, 20, 22, 23, 28, 36, 43, 58, 69, 84, 101, 104, 106, 121,
125, 130, 131, 135, 147, 148]. Figure 1 shows some selected examples of data collapse.
The success of scaling in condensed matter is unquestionably impressive, but how is this sort of scaling related to the
main topic of this chapter: the scaling of light fragment yields from nuclear multifragmentation experiments (where
direct, straightforward measurements of standard thermodynamic quantities like density, pressure, chemical potential
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FIGURE 1. Examples of data collapse for various fluids and a magnetic system. Top left: the temp&ralivided by the
critical temperaturd plotted as a function of the vapor densfty and liquid densityp; normalized to the critical density: [3].
Bottom left: the cube of the normalized liquid vapor density differeRce (p; — pv)/pc = Ap/pc plotted as a function of the
normalized temperatur€ /T, for “quantum” fluids (a: H&, b: He* and c: B) and classical fluids (d), all fluids show scaling of
the first categoryp, — py ~ &P [5]. Center: the scaled chemical potenﬂiﬁp|/|s|’35 plotted as a function of the scaled density
difference|Ap|/ |s\3 in the critical region of several fluids (COXe, Sk, Ar, N>O and CCIR) [6]. Top right: scaled experimental

MHT data on five different magnetic material: CsBEuUO, Ni, YIG and PgFe [84]. Bottom right: the scaled susceptibility plotted
as a function of the scaled temperature fordhe 3 Ising model [131].

and so on are impossible)? To see how the two are related we present a derivation of Fisher's model in the next section.
An aside: in the following text the more general term “cluster” will be used instead of “fragment” or “droplet.” This

is done to underscore the similarity between nuclear fragments and clusters (properly defined [21, 127]) in systems

like the Ising model and droplets of fluid (classical or quantum). We also do this to avoid the unfortunate labeling of

the process of nuclear cluster production as “fragmentation” which has a very specific meaning in condensed matter

physics [41] that may be quite different that what the nuclear multifragmentation community has in mind.

FISHER’S MODEL AND SCALING

Physical cluster models

Fisher's model is an example of an equation of state that scales [7, 8, 104, 127] and is one of many physical cluster
theories. Physical cluster theories of non-ideal fluids assume that the monomer-monomer interaction is exhausted by
the formation of clusters and the clusters behave ideally and are independent of each other. Clusters of a given number
of constituents\ can be characterized by their masg a chemical potential per constitugnand a partition function
ga(T,V) that depends on the temperatdrand volumeV of the fluid. Because of the ideality of the fluid of clusters,
the pressure and density are straightforward to determine the prgsasire

T [
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and the density as

1 0
== 5 Ag(T,V)Z 2
P=y A; (T.V) @)
wherezis the fugacityz= /7. The concentration oA clusters is then
TV)A
n(T,2) = BVIZ 2 )z @)

Fisher's model

Fisher’s contribution to physical cluster theory was to write the partition function of a cluster in terms of the free
energy of the cluster. The energetic contribution to the free energy (very recognizable to nuclear scientists) is based on
the liquid drop expansion

EA: E\/+ES (4)

whereEy is the volume (or bulk) binding energy of the cluster which is taken tB\pe- ay A whereay is the volume
energy coefficient. The factd; is the energy loss due to the surfac@vhere surface is taken as te- 1 measure
of a cluster that exists id Euclidean dimensions) of the cluster. For clusterg-dimensions this is usually taken
to be Es = asA%1/4, BecauseEs is a measure of the volume energy loss due to the finiteness of the cluster, i.e. that
the cluster has a surface, the surface energy coefficient is nearly equal to and opposite in sight to the volume energy
coefficient:as ~ —ay . Fisher left the surface energy factor more general, wriigg asA° whereo is some general
exponent describing the ratio of the surface to the volume of the cluster.

Fisher estimated the entropic contribution to the free energy of the cluster based on a measure of the combinatorics
of the number of clusters with surfase

Os = gos ¥e>* (5)

whereqp is some overall normalizatiofys can be thought of as the limiting entropy per unit surface of a cluster.
This estimate can be tested by the study (and direct counting) of the number of self-avoiding polygons on the square
lattice [89, 126, 137]. An example of a self-avoiding polygons on the square lattice is shown in Fig. 2. The study of

self-avoiding polygons shows that to leading orger 0.562301495 3”97 [89] while a fit to the direct counting of
self-avoiding polygons (shown in Fig. 2) gives$@s>°%e%97 [126, 138]. Fisher then assumed that for large clusters,
over some small temperature range the most probable or mean surface of a cluster would go as

S~ ggA° (6)

so thatgs could be re-written as
ga~ QoA TN (7

whereg, = goay *, T = xo andbj = bsag. Which gives the entropy of a cluster as:
Sa=Inga=Ingy— TINA+HA°. (8)
The patrtition function of a cluster is then
d
2 _
Qa(T,V) = V <2”hr2AT> erXp<EATTSA>

uvas— 47 (522
T

VA “exp )

TH)A)

exp [—

Fisher identified the numerator of the first exponential as the distance from phase coexistence as measure by the
chemical potential

d h?
Aoura\/ZATln(znmAT), (20)
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FIGURE 2. Left: an example of a self-avoiding polygon on the square lattice vith23 ands = 40, there are 4457,726 494
ways to form a cluster with this number and surface. Right: a fit using Eq. (5) (solid line) to the direct courgtir{gén circles).
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FIGURE 3. Left: the direct counting ofis (open circles) ands A (symbols). Middle: the most probable surface as a function of
AandT. Right: top: the effective surface to volume exponerds a function of temperature; bottom: the fractal dimen&ipras
a function of temperature, see references [36, 138] for details.

at coexistence (or condensatioh) = 0 and pcoex = %Tln (%) — ay. The “microscopic” part of the surface

tension(ag— Th,) vanishes at the critical point, leaving only a power law (which has been explicitly verified in
computational systems [13, 20, 39, 36, 40, 48, 51, 55, 59, 65, 67, 68, 69, 70, 82, 85, 86, 93, 101, 104, 130, 135,
138, 147] and implicitly verified in a wide variety of physical fluids [9, 12]). Thus

as

TC: t?s

11)

Using Eg. (10) and assuming little or no temperature dependerseofib} over the temperature range in question,
then we may re-write Eq. (9) as

(e2
Oa(T,V) =VgA " exp(A_‘FA> exp(— asﬁ_A ) (12)
which gives the familiar expression for the cluster number concentration
(&
na(T) = g{)ATexp(A#A> exp(—asSA) : (13)
T T
Caveats

Before proceeding further, we wish to test Fisher’s assumptions on the most probable or mears sfidaztaster.
We may do this by using the combinatorics of self-avoiding polygons and noting that, at phase coexistence, Eq. (14)



is the product of the combinatorial factor and a Boltzmann factor that depends on the surface energy:
ass
nsa(T) Dgsaexp(—=) (14)

where now we write things explicitly in terms of both cluster numBend cluster surface[136, 138]. The mean
surface of a cluster is then just

>Aa-15A(T)
Sa-1Nsa(T)

Using the direct counting ofs A (see Fig. 3) and setting (as in the Ising modgl)= 2 (thusT; ~ 0%97 = 2.06) we
can determine the most probable surface of a clustéraainstituents at temperatufe Fitting S(A) with agA° letting
ap and o be free parameters we can study Fisher’'s assumption. Figure 3 shows that at low temperailiés
as one would expect for @ = 2 system. As the temperature increases the valug iotreases. AT = T, ~ 2.06,
o ~ 0.65, a change of 30% from the= 0 value ofc. Thus, Fisher’s implicit assumption thatis a constant is only
good to the 30% level in this example. Looking at the accpeted values-08/15 from thed = 2 Ising model [147]
and comparing it to the expectdd= 0 value ofc = 1/2 shows this assumption to be good to thé786 level for
0<T < T. Looking at the accpeted values®f= 0.63946+ 0.0008 from thed = 3 Ising model [135] and comparing
it to the expected = 0 value ofc = 2/3 shows this assumption to be good to th@sds level for 0< T < T.. When
the temperature is restricted to a very small range ardurdT. this assumption is quite good.

Another possible problem with this assumption is not only the dependercemtemperature, but the dependence
of ap on temperature and cluster si&eFisher implicitly assumed that féx — o ag is some constant. Using Eqg. (15)
with thegs a Of self-avoiding polygons we can test this assumption, by examining

5= (15)

_ p-og_ a0 2A=15TA(T)
B=ATSEA Sa-1Nsa(T) (16)

In this exampleo = 8/15 is taken from th&l = 2 Ising model andl' = 1 ~ T./2. Figure 4 shows the results. For

A < 10 the value ofg clearly shows “shell effects” that cause fluctuations on the order of 10% of the limiting value of
ap. For A > 10 the shell effects diminish and the limiting valueagf~ 4.6 is reached. Thus in this example Fisher’s
assumption holds fok > 10 [136].

Figure 4 also shows the results from a direct countingd ef 3 self-avoiding polyhedra [140] and clusters from the
d = 3 simple cubic Ising lattice [148]. Tha 4 for the self-avoiding polyhedra has been directly counted w09,
counting forA > 10 is prohibitively time consuming on today’s computers. However, the dependeagemtluster
size and temperature can be investigated just as in the case att#epolygons (usings = 0.63946+ 0.0008 and
as = 2, which holds for thel = 3 Ising model as well). We see that for the lowest temperailire {, as compared to
thed = 3 Ising modelT; = 4.51152+ 0.00004 [135]) the shell effects are evident: for perfect cubesl andA =9
ap = 6 as expected. As the temperature increases the shell effects are washedapuslzowls a steady rise with.

The steady rise dadp with A could indicate thab > 0.63946+ 0.0008 (which violates the first category of scaling as
will be seen below) or that the limiting behavior Fisher assumed does not set id\untB0. In either case, it seems
this assumption is poorer th= 2 than ind = 3.

Finally, we note that Fisher's model is valid only for< T.: temperatures greater thagyield cluster surface free
energies that are negative, and thus unphysical. The parametrization used in Fisher's model this is only one example of
a more general form of the scaling assumptian= A~7f(X) andX = A°¢? and wheref (X) is some general scaling
function which [20, 22, 28]:

- is valid on both sides of the critical point;

« for smallX (T ~ T and smallA) ande > 0, f(X) will vary as exg—X) with c =1/(86) =1/(y+B) ~ 0.64
for three dimensional Ising systems,1% for two dimensional Ising systems er0.45 for three dimensional
percolation systems angd=1;

- for large X (T far from T or largeA) and e > 0, f(X) will vary as exg—X) with ¢ = (d —1)/d for all d
dimensional systems and with = 2v, wherev ~ 0.63 for three dimensional Ising systems= 1 for two
dimensional Ising systems amd~ 0.88 for three dimensional percolation lattices.

Figure 5 shows the general form of the scaling functf¢X) for percolation systems [20, 22]. However, this more
general scaling functioi(X) does not lend itself as easily to a physical interpretation as does the parameterization
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FIGURE 4. Left: the geometrical pre-factor for the mean surface to cluster size rekjian a function of cluster siz& The
solid line shows the results for Eq. (16), open circles slagvfor d = 2 Ising clusters [136]. Right: top: the effective surface to
volume exponent as a function of temperature; bottom: the fractal dimenBipras a function of temperature, see reference [140]
for details.
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FIGURE 5. Left: the scaled cluster yieldss = na(p)/A~" as a function of the argument of the scaling functor= A% (p —
pc)/ pe for bond building p is the bond building probability) = 3 percolation on a square lattice with®lgites. Data from different
p follow the same curve as required by the scaling hypothesis. The parabola is the generalfoxm[@n]. Right: the natural log
of the scaled cluster yields as a functionmi (solid points) for (a)d = 2 to (f) d = 7 together with the least-squares fits (solid
lines) [22].

given by Fisher's model and it is this physical interpretation which is important to the application of this method to the
nuclear data.

With these caveats in mind we can proceed, cautiously, and see how both categories of scaling arise in Fisher's
model.

Scaling from Fisher's model

Starting with the second category of scaling first, namely: data collapse. We start by looking at the cluster concen-
trations in Fisher's model given by Eq. (13). Dividing both sides by the power law factor and the chemical potential



factor then gives:

o
L)AA = exp( asf_;‘l_A > ) a7)
goAvexp( 442

This shows that scaling the cluster concentrations by the power law and chemical potential factors against the cluster
surface free energy should collapse the data for each clusteh sizeach temperatufe to a single curve. Figure 6
shows this type of scaling and data collapse in percolation [136] and Ising model cluster yields [135]

To arrive at the first category of scaling from Fisher's model, we combine the general equations for pressure and
density for physical cluster models, equations (1) and (2), with Fisher's estimate of the cluster partition function,
Eq. (12) giving

) . (18)

= _ AuA aseA° hd 1— AuA aseA°
_ / T _ — ! T _
p_TA§:1goA exp(_l_ )exp( T > andp Z:lgOA exp - exp T
l _ aseA° S g aseA°
Peoex=T z OpA Texp(—) andpcoex = E OoA Texp| ——— . 19)
coex - 0 T coex - 0 T

Along the coexistence line, i.Au = 0, we have

At the critical point we have
pe=Tc Y GA Tandpc= Y goA " (20)
& &
Taking the ratios of equations (19) to (20) gives the reduced prepssssg pc and reduced densifyeoex/ Pc
o - aseA° ) 1— _aseA®
Pcoex _ Toa1A TeXp(_ T ) and Pcoex _ 2a-1A TeXp( T )
Pe Teya A" Pe Teya1A®

which has the advantage of being free of the congignin order to further test the results above, we determine the
magnetizatio of thed = 3 Ising model using Eqg. (21) and recalling that the magnetization per lattice site is simply:

(21)

P
M oo (22)

Using the values o&, 7, cop and T, determined from fitting clusters on tlie= 3 Ising lattice shown in Fig. 6 [135]

in Eq. (21), Eq. (22) gives one branch of the magnetization curve, the branth fob. Since the magnetization is

symmetric about the origin, the points fbt < 0 are reflections of the points féd > 0. The results are shown as

the open circles in the bottom right plot of Fig. 6. These results compare well with a parametrizatib{irfpf135]

(used as a “benchmark”) shown as a solid line in the bottom right plot of Fig. 6. Better agreement v{iTthe

parameterization is found when the valuessof 0.63946+ 0.0008,7 = 2.209+ 0.006 (from the scaling relations in

Fisher's model developed below and valuegiof 0.32653+ 0.00010 andy = 1.2373+0.002 [135]),as = 12 and

Tc = 4.51152+ 0.00004 were used. Nearly perfect results were observed ahems “tuned” to 16 and the more

precise value off; and the scaling relation exponent values were used. The agreement between the magnetization

values calculated via the sum in Eq. (22) and Mh€T) parameterization for & T < T. suggest that the ideal gas

assumptions in Fisher’'s model allow for an accurate description of the system even up to densities agchigh as

By combining equations (19) and (20) we can arrive at the scaling relations as follows:

=2
_ / o / _ o .
m = % AlfT |:1_exp<_ astA ):| ~ &r (_TZ> (as) £ 02 = Bgﬁ (23)
Pe Pe ;:1 T PcO o Te

since asl — T, large values oA give the dominant contribution to the above sum and the sum may be replaced by an
integral [18]. HereB = Z=2. This leads directly to the familign — p, ~ &P relation.
Similarly, one finds that along the coexistence line the specific heat at constant volume is [7, 127]

82 PcoexY

—_T2 T
& =T

1-t

~go ~g ¢ (24)
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FIGURE 6. Top three plots: the scaling of Eq. (17) fdr= 3 bond breaking percolation on the simple cubic lattice of kige9,
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cubic lattice of side. = 50 [135]. Bottom right plot: the magnetization as a function of reduced temperature. The open circles show
the magentization predicted via Fisher's model (see text) and the solid line shows a parameterization for the magnetization.

_ -1
thuso = ==.

Finally, one the isothermal compressibility can be found to be [104]
Kt=—=——|T~eo ~g 7 (25)

thusy = 3%,

The thrge examples above show how Fisher's model leads to the power laws that describe the behavior of a system
near its critical point. Putting the equations definmgB3 andy together recovers the scaling lant- 28 + v = 2 and
illustrates that (aside from so-called “hyperscaling”) there are only two independent expanems £ in Fisher's

model) from which all others are recovered.

Excluded volume effects on Fisher’'s model

The final entry into this section discussing Fisher's model is the effect of the finite volume of real, physical clusters.
Fisher's model, like any physical cluster model, assumes that the clusters have no volume. Obviously this is not
the case, so how well does Fisher's model do in describing real clusters which have some finite volume? We have
already seen in Fig. 6 that Fisher's model collapses the cluster concentrations of computer models quite well when
the parameters (exponents, critical temperature, surface energy coefficient) are allowed to vary; the values returned for
these parameters from the fitting procedures usually agree well with expected values [130, 135] (with the exception of



o for thed = 3 Ising model, though that discrepancy may be the result of using clusters that are too small, see Fig. 4
and discussion above).

In the case of physical fluids the effects of the finite volume of clusters at the critical point can be studied by realizing
that Fisher's model gives the compressibility factor as the ratio of two Rierfidanctions

Tepc B zvozlAlfr B C(r— 1).

When the compressibility factor for real fluids (e.g.%4IBe, ethane, acetylene, GEBH, GHsCl, etc.) was analyzed

it was found thatr = 2.202+ 0.004 which is to be expected far= 3 systems [9]. This result indicates that for real
fluids the value ofr is not greatly affected by the finite size of the clusters. An analysis of the “excluded-volume”
effect and Fisher's model later showed that the scaling laws ¢e+e23 + ¥y = 2) were unchanged [11].

If the exponents and scaling laws are unaffected by the finite volume of clusters, then what are the effects of the
finite volume of the clusters? To answer this question we turn our attention back to the self-avoiding polygons [137].
Figure 4 shows that using the directly counted combinat@dgswve were able to reproduce the behavior of clusters
from thed = 2 Ising model on a square lattice, up to a point. The critical temperature predicted by the self-avoiding
polygonsT; = 2.06 is approximately 10% below Onsager’s analytically determined VRlue2.26915.. ..

To improve the above estimate ©f, at coexistence, we think of an initial configuration of a cluster Wgh— o
constituents and surfacg and a final state of a cluster #fconstituents and surfasand its complement: a cluster
of Ac = Ag — A constituents and surfacg. This assumes stochastic cluster formation and is supported by the Ising
cluster’s Poissonian nature [135]. Now the free energy of cluster formation is

P _ SRaAT _ L) 26

AG = AE — TASH peoedV = ay [A+ (Ao —A) —Ag]+as(s+sc—%0)— T (In Osa+INgs A, —IN gsO,AO) + pAV (27)

AV is the volume change between the initial and final configurations. All tersancel. In the limitdg — oo, S~ S
and Ings, =~ Ingg, leaving only the cluster’s contribution to tiA&. The volume change for the lattice gas is

AV = a1 [A+ (Ao —A) —Ao] +I(s+ s —%0) (28)

wherea; is the geomertrical prefactor relating the cluster volume to the cluster nutvdoad! is the interaction range
between two constituents, one spacing on a lattieel. The second term of Eq. (28) arises from the fact that no two
clusters can come within a distanicef each other and be considered two clusters, thus each cluster has a i®lume
surrounding it which is excluded to all other clusters.

In in the Ag — oo limit the first term of Eq. (28) cancels. The second term of Eq. (28) depends only on the cluster’s
surface. Writing the partition function for a cluster@g$V, T) ~ exp(—AG/T) [18] and now including the excluded
volume factor from Eq. (28) gives

ns(T) ~ gsexp(—ais) exp<2pcoexls) ~ oS X exp |:_S(as—Tbs+2pcoex|) . (29)

T T T

The factor of two arises from moving the cluster from one phase to the other: imagine taking a cluster from the
condensed phase, which leaves behind a bubble, and placing it in dilute phase. Both the bubble in the condensed phase
and the cluster in the dilute phase have the associated excluded volume contribigion of

Just as above, the “microscopic” portion of the surface free energy vanishes at the critical point so

as+2pd  as | 2pcl
= "h b b

The first term in Eq. (30) can be thought of as the “ideal” critical temperature and the second term can be thought of
as the correction that arises due to the finite volume of the cluster. Working at the critical poimpwith.11 for the
d = 2 Ising model, Eq. (30) givek, = 2.29, within 1% of the Onsager value.

Equation (29) also provides a good description of Ising cluster yields. Figure 7 shows the Ising iyi¢Tds=
Yshsa(T)) of a two dimensional square lattice of sitle= 80 and the predictions of Eq. (13) and (29) (both
at coexistence and both using the directly courggdl combinatorics of the self-avoiding polygons) witto fit
parameters

Figure 7 also shows the integrated quantities of the density and pressure along the coexistence liree=fo2 the
Ising system. The values @koex and peoex determined from calculations on the square lattice [148] (open circles),

(30)
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FIGURE 7. Left: Ising cluster yields from thel = 2 square lattice (open circles) at four different temperatures compared to
Eq. (13) (filled circles) and (29) (filled squares) (both at coexistence and both using the directly aaunéaenbinatorics of the
self-avoiding polygons) witimo fit parameter§137]. Right: the densitpcoexand pressur@coex at coexistence from the Onsanger
solution (solid line), fromd = 2 Ising calculations on the square lattice [148] (open circles), from Egs. (19) and (13) (filled circles)
and from Eqgs. (19) and (29) (filled squares).

from Egs. (19) and (13) (filled circles) and from Eqgs. (19) and (29) (filled squares) are compared to the analytical
solution of Onsager (solid line). To calculate the pressure and density from the self-avoiding polygon combinatorics
and the finite cluster volume concentration, the equations

S(as+2Pcoed ) S(as+2pcoex|)} . (31)

Peoex=T Q,Aexp{—} andpeoex = Ag&Aexp{—
coex s% S, T coex ; T

were solved iteratively usings = 2 and the directly countegs o [126]. As one might expect, at low temperatures,

where the dilute phase is very dilute, the “ideal” expressions of Egs. (19) and (13) work quite well. However as the
temperature increases and more and more clusters appear in the dilute phase the “ideal” expressions fail and predict, as
expected based on the cluster concentration predictions, pressure and density values that are higher than the Onsager
solution. The finite volume expressions of Egs. (19) and (29) follow Onsager’s solution and the Ising calculations
more closely. The conclusion of this exercise is that 40% change inl; from the “ideal” estimate is enough to
approximately offset any effects of the finite volume of the clusters. Thus by ledviag a free parameter when

fitting cluster concentrations, or by obtainifigfrom other methods, one escapes, for the most part, any problems that
arise from the finite volume of the clusters.

Summary

We have seen that Fisher’'s model is a physical cluster model. Fisher’s main contribution was to introduce an accurate
approximation for the entropic contribution to the cluster partition function. This lead to the development of a model
that shows both types of scaling: the singular behavior of quantities near that critical point and the scaling laws that
relate exponents as well as the data collapse of cluster concentrations. Fisher's model has an unphysical surface tension
above the critical temperature, however belRit serves as a good approximation that lends itself easily to a physical
interpretation. Though Fisher's assumption about the mean surface of a cluster is crude (using a constant values for
ap ando ignores the temperature dependence of the mean surface of a given cluster size) and it explicitly ignores the
finite volume of the clusters (though implicitly the finite volume is almost all accounted for by the proper choice of
Te) it has successfully: described cluster production in percolating systems and Ising systems (see above); reproduced
the compressibility factor at the critical point (see above); predicted (within a few percent) the compressibility factor
of real fluids from the triple point to the critical temperature [12, 52]; and has been used to describe the nucleation rate
of real fluids [14, 42].



A BRIEF HISTORY OF EXPERIMENTAL NUCLEAR CLUSTER PRODUCTION

#n the beginning there was neutron evaporatitn2], and the evaporation was go¢4]. . .

It was noted long ago that statistical methods could be applied to nuclear processes if the energies involved are
large when compared to the lowest excitation energies of nuclei [1]. By doing this, Weisskopf was able to formulate
expressions for the probability of neutron (or charged particle) emission from excited nuclei. Weisskopf based his
work on the formula for the probability of evaporation from a body at low temperatures. In that regard, Weisskopf was
working out the formula to describe the evaporation of neutrons from a hot nucleus, i.e. he was describing a first order
phase transition in nuclear matter with a neutron leaving the condensed phase (the hot nucleus) and entering the dilute
phase (a very low density neutron vapor).

Following Bohr, Weisskopf divided processes initiated by nuclear collisions into two stages: the first was the
formation of a compound nucleus and the second was the disintegration of the compound nucleus. Both stages could
be treated independently. The energy of the compound nucleus is similar to the heat energy in a solid or liquid and
the emission of particles from the compound nucleus is analogous to an evaporation process and Weisskopf derived
a general statistical formula for the evaporation of particles from an excited compound nucleus (with the caveats of
the finiteness of the nucleus and the fact that the evaporation of a particle takes away significant energy from the
compound nucleus).

The probability per unit time of a nucledg with excitation energye* emitting a neutron of mags with kinetic
energy betweed# and& + dé& (wheredeis much larger than the levels 8f), thus transforming itself into nucleus
Ac with an excitation energig* — Eg — & (whereEg is the neutron binding energy 8§) is

&-Tng+S—S—f(4)]
T las

(32)

mes
Wa(8)d8 = 0 (Ea.) g eXp{_

whereo (Eg, e) is the mean cross section for the collision of a neutron of kinetic enewgth nucleusA; of energy

E* — Ep — eresulting in the production of nucledg of energyE*; g is the number of states for the spin of the particle
under consideratiorE) = In w(E) corresponds to the entropy of a nucleus with and energy betesmlE + dE

(and density of levelso(E)); T is the temperature at whidh is the most probable energy of nucleis and f (e)
“contains all further terms of the development.” The probability per unit time for the evaporation of particles of charge
Z from nucleusfg is

Wb (€)d& = 7R3 (g—eZZR"OZ> T exp

m2h T

&+ PR T [lng+&\—s.3— f(g—eZ%)]

- d& (33)
whereRy is the radius of the compound nucleus afidis its charge. It is no surprise, given that Weisskopf had
evaporation in mind, that equations (32) and (33) are similar to Fisher’s estimate of the cluster partition function given
in Eq. (9).

Multiplying the total probability of particle emission tythen gives the decay width: for neutrons:

Mn :6%T2exp(lng+SA—SB) (34)

m2h
(whereo is the mean value of (Ep, &) f (&) averaged over the Maxwell distribution) and for charged patrticles
Mp= G0 T2exp(INg + S~ Se). (35)

m2h’

Thus Weisskopf developed a theory of nuclear evaporation, i.e. a theory of first order phase transition in finite, charged,
asymmetric nuclear matter.

Experimental evidence of neutron evaporation appeared in the energy distributions of neutrons measured after
various nuclei were bombarded with 190 MeV protons [4]. Equation (32) gives the probability of the evaporation of a
single neutron from a single compound nucleus at a specific excitation energy. However, experimental measurements
of neutron kinetic energy distributions were measured for neutrons that came from a cascade of successive evaporations
from compound nuclei with a distribution of initial excitation energies. Thus to connect Eq. (32) with the experimental
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FIGURE 8. The scaled energy distributions of neutro% vs. &) evaporated from (left to right): Al, Ni, Ag and Au
nuclei after bombardment from 190 MeV protons [4]. The slopes of the lines give the inverse of the effective temperature of

evaporation.

measurements the successive neutron (and proton) evaporation and distributions of initial excitation energies had to be
taken into account which gives [4]

e\t &\ 1
wherei is the generation of the evaporation. Figure 8 shows logarithmic plots of scaled neutron energy distributions
(% vs. &) follow a straight line whose slope is the inverse of the effective temperature of evapdFation

The plots in Fig. 8 are similar to the Arrhenius plots of nuclear cluster yields observed much latter [72], as such they
present early evidence for thermal scaling in nuclear evaporation.

If the analogous behavior of evaporation from excited nuclei and evaporation of classical fluids holds, then one
expects that as the temperature increases the first order phase transition (evaporation) becomes a continuous phase
transition at a critical temperatuiig above which there is a smooth cross over from the condensed phase to the dilute
phase. Thus, when inclusive cluster yields from the reaction of &).om < 350 GeV protons incident on krypton
and xenon nuclei exhibited a power law (as expectechidflc) in Eq. (13)) with an exponent between 2 and 3 (as
expected fod = 3 systems [20]) it seemed possible that the critical temperature had been reached [24, 26, 27].
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