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Abstract. This chapter gives a historical review of the scaling of yields of particles emitted from excited nuclei. The focus
will be on what scaling is, what can be learned from scaling, the underlying theory of why one might expect particle yields to
scale, how experimental particle yields have been observed to scale, model systems where particle (cluster) yields do scale and
finally scaling observed in the particle yields of various low and medium energy nuclear reaction experiments. The chapter
begins with a basic introduction to scaling in the study of critical phenomena and then reviews, in detail, Fisher’s model
which has all the aspects of scaling and can be directly applied to the counting of clusters, the most reliable measurement
accessible to the experimental study of nuclear reaction. Next this chapter gives a history of the various scalings observed
in nuclear reaction experiments and culminates with an estimate of the nuclear liquid-vapor phase boundary based upon
measured particle yields.
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INTRODUCTION

This chapter performs the modest task of covering seven decades worth of research on scaling in condensed matter
and nuclear physics [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25?
, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,
87, 89, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136,
137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149]. Inevitably, such and attempt will be incomplete and
every reader will have his or her own favorite reference(s) omitted. To that end we humbly submit this chapter as a
starting point for the motivated reader from which they can, perhaps, further their own understanding and research.

Scaling has been called “one of the three pillars of modern critical phenomena” [84]. The scaling hypothesis used in
the study of critical phenomena was independently developed by several scientists, including Widom, Domb, Hunter,
Kadanoff, Fisher, Patashinskii and Porkrovskii. See reference [8] for an authoritative review. The scaling hypothesis
has two categories of predictions, both of which have been verified experimentally for a variety of physical systems.

The first category is a set of relations calledscaling laws. These scaling laws relate the critical exponentsα, β

andγ which describe, for instance, the behavior of the the specific heat (C∼ ε−α ), density differences of the phases
(ρl −ρv ∼ εβ ) and isothermal compressibility (κT ∼ ε−γ ) for fluid systems; specific heat (C∼ ε−α ), magnetization
(M ∼ εβ ) and isothermal susceptibility (χT ∼ ε−γ )for magnetic systems or the singular part of the zeroth, first and
second moment of the cluster distribution percolating systems near a critical point (ε = (Tc− T)/Tc for physical
systems and(pc− p)/pc for percolating systems). In all the systems mentioned here, and more, these exponents are
related via scaling lawα +2β + γ = 2.

The second category is a sort ofdata collapse, which is best explained in terms of a the Ising model. We may write
the equation of state as a functional relationship of the formM = M(H,ε) whereH is the applied magnetic field. Since
M(H,ε) is a function of two variable, it can be graphically represented asM vs ε for differentH values. The scaling
hypothesis predicts that all of theseM vs ε curves can be “collapsed” onto a single curve provided that one plots not
M vsε but rather a scaledM (M divided byH to some power as a function of a scaledε (ε divided byH to some other
power). The predictions of the scaling hypothesis are supported by a wide range of experimental work with physical
systems as well as computational models [3, 5, 6, 8, 16, 17, 19, 20, 22, 23, 28, 36, 43, 58, 69, 84, 101, 104, 106, 121,
125, 130, 131, 135, 147, 148]. Figure 1 shows some selected examples of data collapse.

The success of scaling in condensed matter is unquestionably impressive, but how is this sort of scaling related to the
main topic of this chapter: the scaling of light fragment yields from nuclear multifragmentation experiments (where
direct, straightforward measurements of standard thermodynamic quantities like density, pressure, chemical potential
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Fig. 6. The scaling function of the susceptibility fχ (z) = χH0h1−1/δ . The solid line is the parametrization of
Ref. [3], the dashed lines are the asymptotic forms (34). The numbers refer to the J = 1/T -values of the data.
The star represents the normalization fχ (0) = 1/δ.

6. The correlation length

Instead of using correlation functions of the individual spins it is more favourable [31] to
consider spin averages over planes and their respective correlation functions. For example,
the spin average over the (x, y)-plane at position z is defined by

(67)Sz = 1
L2

∑
x,y

φx,y,z.

The average S of all Sz is equal to the lattice average φ and

(68)〈Sz〉 = 〈S〉 = 〈φ〉.
Correspondingly, we define the plane-correlation function G(z) by

(69)G(z) = L2
(〈S0Sz〉 − 〈S〉2).

Here, z is the distance between the two planes. Instead of choosing the z-direction as
normal to the plane one can as well take the x- or y-directions. Accordingly, we enhance
the accuracy of the correlation function data by averaging over all three directions and all
possible translations. The correlators are symmetric and periodic functions of the distance
τ between the planes

(70)G(τ) = G(−τ ) and G(τ) = G(L − τ ).

The factor L2 on the right-hand side of (69) ensures the relation

(71)χ =
L−1∑
τ=0

G(τ) =
L/2∑

τ=−L/2+1
G(τ).

FIGURE 1. Examples of data collapse for various fluids and a magnetic system. Top left: the temperatureT divided by the
critical temperatureTc plotted as a function of the vapor densityρv and liquid densityρl normalized to the critical densityρc [3].
Bottom left: the cube of the normalized liquid vapor density differenceR = (ρl − ρv)/ρc = ∆ρ/ρc plotted as a function of the
normalized temperatureT/Tc for “quantum” fluids (a: He3, b: He4 and c: H2) and classical fluids (d), all fluids show scaling of
the first category:ρl −ρv ∼ εβ [5]. Center: the scaled chemical potential|∆µ|/ |ε|βδ plotted as a function of the scaled density
difference|∆ρ|/ |ε|β in the critical region of several fluids (CO2, Xe, SF6, Ar, N2O and CClF3) [6]. Top right: scaled experimental
MHT data on five different magnetic material: CrBr3, EuO, Ni, YIG and Pd3Fe [84]. Bottom right: the scaled susceptibility plotted
as a function of the scaled temperature for thed = 3 Ising model [131].

and so on are impossible)? To see how the two are related we present a derivation of Fisher’s model in the next section.
An aside: in the following text the more general term “cluster” will be used instead of “fragment” or “droplet.” This

is done to underscore the similarity between nuclear fragments and clusters (properly defined [21, 127]) in systems
like the Ising model and droplets of fluid (classical or quantum). We also do this to avoid the unfortunate labeling of
the process of nuclear cluster production as “fragmentation” which has a very specific meaning in condensed matter
physics [41] that may be quite different that what the nuclear multifragmentation community has in mind.

FISHER’S MODEL AND SCALING

Physical cluster models

Fisher’s model is an example of an equation of state that scales [7, 8, 104, 127] and is one of many physical cluster
theories. Physical cluster theories of non-ideal fluids assume that the monomer-monomer interaction is exhausted by
the formation of clusters and the clusters behave ideally and are independent of each other. Clusters of a given number
of constituentsA can be characterized by their massmA, a chemical potential per constituentµ and a partition function
qA(T,V) that depends on the temperatureT and volumeV of the fluid. Because of the ideality of the fluid of clusters,
the pressure and density are straightforward to determine the pressurep as

p =
T
V

∞

∑
A=1

qA(T,V)zA (1)



and the densityρ as

ρ =
1
V

∞

∑
A=1

AqA(T,V)zA (2)

wherez is the fugacityz= eµ/T . The concentration ofA clusters is then

nA(T,z) =
qA(T,V)zA

V
. (3)

Fisher’s model

Fisher’s contribution to physical cluster theory was to write the partition function of a cluster in terms of the free
energy of the cluster. The energetic contribution to the free energy (very recognizable to nuclear scientists) is based on
the liquid drop expansion

EA = EV +Es (4)

whereEV is the volume (or bulk) binding energy of the cluster which is taken to beEV = aVA whereaV is the volume
energy coefficient. The factorEs is the energy loss due to the surfaces (where surface is taken as thed−1 measure
of a cluster that exists ind Euclidean dimensions) of the cluster. For clusters ind-dimensions this is usually taken
to beEs = asAd−1/d. BecauseEs is a measure of the volume energy loss due to the finiteness of the cluster, i.e. that
the cluster has a surface, the surface energy coefficient is nearly equal to and opposite in sight to the volume energy
coefficient:as'−aV . Fisher left the surface energy factor more general, writingEs = asAσ whereσ is some general
exponent describing the ratio of the surface to the volume of the cluster.

Fisher estimated the entropic contribution to the free energy of the cluster based on a measure of the combinatorics
of the number of clusters with surfaces

gs' g0s−xebss (5)

whereg0 is some overall normalization,bs can be thought of as the limiting entropy per unit surface of a cluster.
This estimate can be tested by the study (and direct counting) of the number of self-avoiding polygons on the square
lattice [89, 126, 137]. An example of a self-avoiding polygons on the square lattice is shown in Fig. 2. The study of
self-avoiding polygons shows that to leading ordergs' 0.562301495s−

5
2 e0.97s [89] while a fit to the direct counting of

self-avoiding polygons (shown in Fig. 2) gives 0.62s2.55e0.97s [126, 138]. Fisher then assumed that for large clusters,
over some small temperature range the most probable or mean surface of a cluster would go as

s' a0Aσ (6)

so thatgs could be re-written as
gA ' g′0A−τeb′sA

σ

(7)

whereg′0 = g0a−x
0 , τ = xσ andb′s = bsa0. Which gives the entropy of a cluster as:

SA = lngA = lng′0− τ lnA+b′sA
σ . (8)

The partition function of a cluster is then

qA(T,V) = V

(
2πmAT

h2

) d
2

zAexp

(
−EA−TSA

T

)

= Vg′0A−τ exp


[
µ +aV − d

2AT ln
(

h2

2πmAT

)]
A

T

exp

[
− (as−Tb′s)Aσ

T

]
. (9)

Fisher identified the numerator of the first exponential as the distance from phase coexistence as measure by the
chemical potential

∆µ = µ +aV −
d

2A
T ln

(
h2

2πmAT

)
, (10)
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FIGURE 2. Left: an example of a self-avoiding polygon on the square lattice withA = 23 ands= 40, there are 49,157,726,494
ways to form a cluster with this number and surface. Right: a fit using Eq. (5) (solid line) to the direct counting ofgs (open circles).
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FIGURE 3. Left: the direct counting ofgs (open circles) andgs,A (symbols). Middle: the most probable surface as a function of
A andT. Right: top: the effective surface to volume exponentσ as a function of temperature; bottom: the fractal dimensionDF as
a function of temperature, see references [36, 138] for details.

at coexistence (or condensation)∆µ = 0 andµcoex = d
2AT ln

(
h2

2πmAT

)
− av. The “microscopic” part of the surface

tension(as−Tb′s) vanishes at the critical point, leaving only a power law (which has been explicitly verified in
computational systems [13, 20, 39, 36, 40, 48, 51, 55, 59, 65, 67, 68, 69, 70, 82, 85, 86, 93, 101, 104, 130, 135,
138, 147] and implicitly verified in a wide variety of physical fluids [9, 12]). Thus

Tc =
as

b′s
. (11)

Using Eq. (10) and assuming little or no temperature dependence ofas andb′s over the temperature range in question,
then we may re-write Eq. (9) as

qA(T,V) = Vg′0A−τ exp

(
∆µA

T

)
exp

(
−asεAσ

T

)
(12)

which gives the familiar expression for the cluster number concentration

nA(T) = g′0A−τ exp

(
∆µA

T

)
exp

(
−asεAσ

T

)
. (13)

Caveats

Before proceeding further, we wish to test Fisher’s assumptions on the most probable or mean surfacesof a cluster.
We may do this by using the combinatorics of self-avoiding polygons and noting that, at phase coexistence, Eq. (14)



is the product of the combinatorial factor and a Boltzmann factor that depends on the surface energy:

ns,A(T) ∝ gs,Aexp
(
−ass

T

)
(14)

where now we write things explicitly in terms of both cluster numberA and cluster surfaces [136, 138]. The mean
surface of a cluster is then just

s=
∑∞

A=1sns,A(T)
∑∞

A=1ns,A(T)
. (15)

Using the direct counting ofgs,A (see Fig. 3) and setting (as in the Ising model)as = 2 (thusTc ' 2
0.97 = 2.06) we

can determine the most probable surface of a cluster ofA constituents at temperatureT. Fitting s(A) with a0Aσ letting
a0 and σ be free parameters we can study Fisher’s assumption. Figure 3 shows that at low temperaturesσ ' 0.5
as one would expect for ad = 2 system. As the temperature increases the value ofσ increases. AtT = Tc ' 2.06,
σ ' 0.65, a change of 30% from theT = 0 value ofσ . Thus, Fisher’s implicit assumption thatσ is a constant is only
good to the 30% level in this example. Looking at the accpeted values ofσ = 8/15 from thed = 2 Ising model [147]
and comparing it to the expectedT = 0 value ofσ = 1/2 shows this assumption to be good to the 6.67% level for
0≤ T ≤ Tc. Looking at the accpeted values ofσ = 0.63946±0.0008 from thed = 3 Ising model [135] and comparing
it to the expectedT = 0 value ofσ = 2/3 shows this assumption to be good to the 4.08% level for 0≤ T ≤ Tc. When
the temperature is restricted to a very small range aroundT ∼ Tc this assumption is quite good.

Another possible problem with this assumption is not only the dependence ofσ on temperature, but the dependence
of a0 on temperature and cluster sizeA. Fisher implicitly assumed that forA→ ∞ a0 is some constant. Using Eq. (15)
with thegs,A of self-avoiding polygons we can test this assumption, by examining

a0 = A−σ s= A−σ ∑∞
A=1sns,A(T)

∑∞
A=1ns,A(T)

. (16)

In this exampleσ = 8/15 is taken from thed = 2 Ising model andT = 1' Tc/2. Figure 4 shows the results. For
A< 10 the value ofa0 clearly shows “shell effects” that cause fluctuations on the order of 10% of the limiting value of
a0. For A≥ 10 the shell effects diminish and the limiting value ofa0 ' 4.6 is reached. Thus in this example Fisher’s
assumption holds forA≥ 10 [136].

Figure 4 also shows the results from a direct counting ofd = 3 self-avoiding polyhedra [140] and clusters from the
d = 3 simple cubic Ising lattice [148]. Thegs,A for the self-avoiding polyhedra has been directly counted up toA = 9,
counting forA≥ 10 is prohibitively time consuming on today’s computers. However, the dependence ofa0 on cluster
size and temperature can be investigated just as in the case of thed = 2 polygons (usingσ = 0.63946±0.0008 and
as = 2, which holds for thed = 3 Ising model as well). We see that for the lowest temperature (T = 1, as compared to
thed = 3 Ising modelTc = 4.51152±0.00004 [135]) the shell effects are evident: for perfect cubesA = 1 andA = 9
a0 = 6 as expected. As the temperature increases the shell effects are washed out anda0 shows a steady rise withA.
The steady rise ofa0 with A could indicate thatσ ≥ 0.63946±0.0008 (which violates the first category of scaling as
will be seen below) or that the limiting behavior Fisher assumed does not set in untilA� 50. In either case, it seems
this assumption is poorer ind = 2 than ind = 3.

Finally, we note that Fisher’s model is valid only forT ≤ Tc: temperatures greater thanTc yield cluster surface free
energies that are negative, and thus unphysical. The parametrization used in Fisher’s model this is only one example of
a more general form of the scaling assumptionnA = A−τ f (X) andX = Aσ εφ and wheref (X) is some general scaling
function which [20, 22, 28]:

• is valid on both sides of the critical point;
• for smallX (T ∼ Tc and smallA) andε > 0, f (X) will vary as exp(−X) with σ = 1/(βδ ) = 1/(γ + β ) ∼ 0.64

for three dimensional Ising systems, 8/15 for two dimensional Ising systems or∼ 0.45 for three dimensional
percolation systems andφ = 1;

• for large X (T far from Tc or largeA) and ε > 0, f (X) will vary as exp(−X) with σ = (d− 1)/d for all d
dimensional systems and withφ = 2ν , whereν ∼ 0.63 for three dimensional Ising systems,ν = 1 for two
dimensional Ising systems andν ∼ 0.88 for three dimensional percolation lattices.

Figure 5 shows the general form of the scaling functionf (X) for percolation systems [20, 22]. However, this more
general scaling functionf (X) does not lend itself as easily to a physical interpretation as does the parameterization
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FIGURE 4. Left: the geometrical pre-factor for the mean surface to cluster size relationa0 as a function of cluster sizeA. The
solid line shows the results for Eq. (16), open circles showa0 for d = 2 Ising clusters [136]. Right: top: the effective surface to
volume exponentσ as a function of temperature; bottom: the fractal dimensionDF as a function of temperature, see reference [140]
for details.
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Fig. II. Scaling plot in three dimensions on a simple cubic 100 x 100 x 100 lattice. Data for different p follow the same curve, as required by
eq. (15). The parabola follows eq. (25). From ref. [26].

function of dimensionality. It is not clear what to expect for fmax and more generally for the shape of
the scaling function f(z) for finite dimensionahities above six.
Universality for the cluster size distribution has also been tested in two [71] and three [26]

dimensions. By adjusting the two lattice-dependent parameters q0 and q1 in eq. (21a) Leath and Reich
[71]could confirm excellently the similarity of triangular and square lattices with respect to cluster
numbers, for s above 85. And in three dimensions [26],bcc and sc lattice also seem to have the same
shape of the scaling function f, as required by universality. Moreover, by usit~g(p — p~)Ip~instead of
p — p~in the definition of the scaling variable z, the two lattices even could be described [26]by the
same parameter q1, a particularly simple form of universality (also perhaps not exact).
In conclusion, scaling for the cluster numbers n5(p), eq. (15), seems to be confirmed well for

sufficiently large clusters close to p~in two and three dimensions. In two dimensions, different work
by different authors using Monte Carlo and series techniques gives consistent results; deviations
seldomly amount to more than ten percent. A comparison of two lattices in twO and three dimensions
confirmed well the universality concept. Very little is published on cluster numbers for more than
three dimensions [45].

3.2.4. Decay far away from p~,
In eqs. (23, 24) we noticed already that forp  p~the cluster numbers decay exponentially for large

s, with log n3 x — ~1/2 above p,~,and cc — s below Pc. That conclusion was bas~don Monte Carlo data
with concentrations between Pc — 0.05 and p~+ 0.05 rather close to the critical point. Away from the
critical point, the inequalities of section 2.4 give for this decay exponent: ~(p~-* 0) = 1 and ~(p-+ 1) =
1 — lid in d dimensions [90].How is the situation for intermediate concentrations, say at p = ~ And
what about three dimensions?

Monte Carlo methods for the cluster numbers do not work well far away from Pc for large s since
only close to Pc many large clusters appear. But since the typical cluster size sE cc Jp —p~’~’is very
large only close to p~’we now perhaps are no longer forced to go to very largó values of s to see the
asymptotic behavior. Thus the exact cluster numbers of Sykes et al. [42,44] can be used for an
analysis. Far above Pc [46, 49, 50] the series data show, similarly to the Monte Carlo results of section
3.2.2, that a simple power law is quite good: log v, cc 511,d fits for d = 2 and •3~dimensionsthe cluster

FIGURE 5. Left: the scaled cluster yieldsvS = nA(p)/A−τ as a function of the argument of the scaling functionX = Aσ (p−
pc)/pc for bond building (p is the bond building probability)d = 3 percolation on a square lattice with 106 sites. Data from different
p follow the same curve as required by the scaling hypothesis. The parabola is the general form off (X) [20]. Right: the natural log
of the scaled cluster yields as a function ofpcX (solid points) for (a)d = 2 to (f) d = 7 together with the least-squares fits (solid
lines) [22].

given by Fisher’s model and it is this physical interpretation which is important to the application of this method to the
nuclear data.

With these caveats in mind we can proceed, cautiously, and see how both categories of scaling arise in Fisher’s
model.

Scaling from Fisher’s model

Starting with the second category of scaling first, namely: data collapse. We start by looking at the cluster concen-
trations in Fisher’s model given by Eq. (13). Dividing both sides by the power law factor and the chemical potential



factor then gives:
nA(T)

g′0A−τ exp
(

∆µA
T

) = exp

(
−asεAσ

T

)
. (17)

This shows that scaling the cluster concentrations by the power law and chemical potential factors against the cluster
surface free energy should collapse the data for each cluster sizeA at each temperatureT to a single curve. Figure 6
shows this type of scaling and data collapse in percolation [136] and Ising model cluster yields [135]

To arrive at the first category of scaling from Fisher’s model, we combine the general equations for pressure and
density for physical cluster models, equations (1) and (2), with Fisher’s estimate of the cluster partition function,
Eq. (12) giving

p = T
∞

∑
A=1

g′0A−τ exp

(
∆µA

T

)
exp

(
−asεAσ

T

)
andρ =

∞

∑
A=1

g′0A1−τ exp

(
∆µA

T

)
exp

(
−asεAσ

T

)
. (18)

Along the coexistence line, i.e.∆µ = 0, we have

pcoex= T
∞

∑
A=1

g′0A−τ exp

(
−asεAσ

T

)
andρcoex=

∞

∑
A=1

g′0A1−τ exp

(
−asεAσ

T

)
. (19)

At the critical point we have

pc = Tc

∞

∑
A=1

g′0A−τ andρc =
∞

∑
A=1

g′0A1−τ . (20)

Taking the ratios of equations (19) to (20) gives the reduced pressurepcoex/pc and reduced densityρcoex/ρc

pcoex

pc
=

T ∑∞
A=1A−τ exp

(
−asεAσ

T

)
Tc ∑∞

A=1A−τ
and

ρcoex

ρc
=

∑∞
A=1A1−τ exp

(
−asεAσ

T

)
Tc ∑∞

A=1A1−τ
(21)

which has the advantage of being free of the constantg′0. In order to further test the results above, we determine the
magnetizationM of thed = 3 Ising model using Eq. (21) and recalling that the magnetization per lattice site is simply:

M = 1− ρ

ρc
. (22)

Using the values ofσ , τ, c0 andTc determined from fitting clusters on thed = 3 Ising lattice shown in Fig. 6 [135]
in Eq. (21), Eq. (22) gives one branch of the magnetization curve, the branch forM > 0. Since the magnetization is
symmetric about the origin, the points forM < 0 are reflections of the points forM > 0. The results are shown as
the open circles in the bottom right plot of Fig. 6. These results compare well with a parametrization forM(T) [135]
(used as a “benchmark”) shown as a solid line in the bottom right plot of Fig. 6. Better agreement with theM(T)
parameterization is found when the values ofσ = 0.63946±0.0008,τ = 2.209±0.006 (from the scaling relations in
Fisher’s model developed below and values ofβ = 0.32653±0.00010 andγ = 1.2373±0.002 [135]),as = 12 and
Tc = 4.51152± 0.00004 were used. Nearly perfect results were observed whenas was “tuned” to 16 and the more
precise value ofTc and the scaling relation exponent values were used. The agreement between the magnetization
values calculated via the sum in Eq. (22) and theM(T) parameterization for 0< T < Tc suggest that the ideal gas
assumptions in Fisher’s model allow for an accurate description of the system even up to densities as high asρc.

By combining equations (19) and (20) we can arrive at the scaling relations as follows:

ρc−ρcoex

ρc
=

g′0
ρc

∞

∑
A=1

A1−τ

[
1−exp

(
−asεAσ

T

)]
'

g′0
ρcσ

Γ
(
−τ−2

σ

)(
as

Tc

) τ−2
σ

ε
τ−2

σ = Bε
β (23)

since asT → Tc large values ofA give the dominant contribution to the above sum and the sum may be replaced by an
integral [18]. Hereβ = τ−2

σ
. This leads directly to the familiarρl −ρv ∼ εβ relation.

Similarly, one finds that along the coexistence line the specific heat at constant volume is [7, 127]

CV = T2 ∂ 2 pcoexV
T

∂T2

∣∣∣∣∣
V

∼ ε
1−τ

σ ∼ ε
−α (24)



First the value of the probability at the critical point qc is
determined by locating the maximum in the fluctuations of
!1" the size of the largest cluster and !2" #2. Figures 8 and 9
show these measures of the fluctuations. The location of the
maximum is determined as in the EOS data, the data are
smoothed, and then the numerical derivative is taken. The
location of the peak in the largest cluster is averaged with the
location of the peak in #2 and the results are recorded in
Table IV. As expected the value of qc changes with the lat-
tice size.
Note that in Fig. 8 the value of #2 for the L!4 lattice

attains a peak value of only $1.9; this is a finite size effect
and due to the small size of the lattice. Since #2 is related to
the fluctuations in the average size of a cluster, it is clear that
as the size of the lattice decreases, the upper limit in the size
of a cluster decreases, thus imposing a limit on the
size of #2.
Next the cluster yields from the three different lattices are

fit simultaneously to Eq. !6", with qc(L) keeping the fit pa-
rameters % and & consistent between lattices and letting '(
and c0 vary between lattices. Data from 0.4)q)1.05qc and
5)A)3L were included in the fitting procedure. This gives
seven fit parameters with 1083 points to fit. The results are
shown in Fig. 10 and recorded in Table V.
The formula in Eq. !6" used in this analysis is only one

example of a more general form of the scaling assumption
*62,63+

nA!A"& f !X ", !A1"

with X!A%,-/T and where f (X) is some general scaling
function. This scaling function should be valid on both sides
of the critical point. For small X (T.Tc and small A) and
,#0, f (X) will vary as exp("X) with %!1/(/0)!1/(#
$/)!0.64 for d!3 Ising systems or 0.45 for d!3 perco-
lation systems and -!1. For large X (T far from Tc or large
A) and ,#0, f (X) will vary as exp("X) with %!2/3 for all
three dimensional systems and with -!21 , where 1!0.63
for d!3 Ising systems and 1!0.88 for d!3 percolation
lattices.
The fitting procedure using Eq. !6" returned a value of

%!0.44%0.01 and &!2.192%0.003 in good agreement with
other measurements, %!0.45 and &!2.18 *63+. It is clear
from these results that the data examined here are in the
small X , ,#0 region where the approximation of f (X)
given in Eq. !6" is valid. As with the EOS data, the errors
quoted here are from the fitting procedure. Systematic errors
that arise from the use of Fisher’s scaling form and from the
fitting regions in A and q are on the order of $10%.
The value of c0 for the L!6 lattice is in good agreement

with previous measures *36+. The interpretation of the
change in c0 with lattice size will be discussed below.
The values of '( for all lattices are close to zero, in

agreement with the fact that percolation calculations such as
these are at coexistence.

FIG. 10. !Color" The scaled yield distribution versus the scaled bond breaking probability for the L!9, 6, and 4 lattices. The solid lines
have a slope of c0(L).

TABLE IV. Critical points of finite percolation lattices.

L qc 2c pc

9 0.705%0.004 0.210%0.001 0.041%0.001
6 0.685%0.004 0.216%0.001 0.041%0.001
4 0.655%0.004 0.243%0.002 0.044%0.001

TABLE V. Percolation fit parameters.

L '( c0

9 "0.008%0.004 2.62%0.04
6 0.001%0.001 2.42%0.04
4 0.007%0.001 1.91%0.04
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FIGURE 6. Top three plots: the scaling of Eq. (17) ford = 3 bond breaking percolation on the simple cubic lattice of sideL = 9,
6 and 4 (q is the bond breaking probability) [130]. Bottom left plot: the scaling of Eq. (17) ford = 3 Ising model on the simple
cubic lattice of sideL = 50 [135]. Bottom right plot: the magnetization as a function of reduced temperature. The open circles show
the magentization predicted via Fisher’s model (see text) and the solid line shows a parameterization for the magnetization.

thusα = τ−1
σ

.
Finally, one the isothermal compressibility can be found to be [104]

κT =
1
ρ

∂ρ

∂ p

∣∣∣∣T ∼ ε
τ−3

σ ∼ ε
−γ (25)

thusγ = 3−τ

σ
.

The three examples above show how Fisher’s model leads to the power laws that describe the behavior of a system
near its critical point. Putting the equations definingα, β andγ together recovers the scaling lawα +2β + γ = 2 and
illustrates that (aside from so-called “hyperscaling”) there are only two independent exponents (σ andτ in Fisher’s
model) from which all others are recovered.

Excluded volume effects on Fisher’s model

The final entry into this section discussing Fisher’s model is the effect of the finite volume of real, physical clusters.
Fisher’s model, like any physical cluster model, assumes that the clusters have no volume. Obviously this is not
the case, so how well does Fisher’s model do in describing real clusters which have some finite volume? We have
already seen in Fig. 6 that Fisher’s model collapses the cluster concentrations of computer models quite well when
the parameters (exponents, critical temperature, surface energy coefficient) are allowed to vary; the values returned for
these parameters from the fitting procedures usually agree well with expected values [130, 135] (with the exception of



σ for thed = 3 Ising model, though that discrepancy may be the result of using clusters that are too small, see Fig. 4
and discussion above).

In the case of physical fluids the effects of the finite volume of clusters at the critical point can be studied by realizing
that Fisher’s model gives the compressibility factor as the ratio of two Riemannζ functions

pc

Tcρc
= ∑∞

A=1A−τ

∑∞
A=1A1−τ

=
ζ (τ)

ζ (τ−1)
. (26)

When the compressibility factor for real fluids (e.g. He4, Ne, ethane, acetylene, CH3CH, C2H5Cl, etc.) was analyzed
it was found thatτ = 2.202±0.004 which is to be expected ford = 3 systems [9]. This result indicates that for real
fluids the value ofτ is not greatly affected by the finite size of the clusters. An analysis of the “excluded-volume”
effect and Fisher’s model later showed that the scaling laws (e.g.α +2β + γ = 2) were unchanged [11].

If the exponents and scaling laws are unaffected by the finite volume of clusters, then what are the effects of the
finite volume of the clusters? To answer this question we turn our attention back to the self-avoiding polygons [137].
Figure 4 shows that using the directly counted combinatoricsgs,A we were able to reproduce the behavior of clusters
from thed = 2 Ising model on a square lattice, up to a point. The critical temperature predicted by the self-avoiding
polygonsTc = 2.06 is approximately 10% below Onsager’s analytically determined valueTc = 2.26915. . ..

To improve the above estimate ofTc, at coexistence, we think of an initial configuration of a cluster withA0 → ∞
constituents and surfaces0 and a final state of a cluster ofA constituents and surfaces and its complement: a cluster
of Ac = A0−A constituents and surfacesc. This assumes stochastic cluster formation and is supported by the Ising
cluster’s Poissonian nature [135]. Now the free energy of cluster formation is

∆G = ∆E−T∆S+ pcoex∆V = aV [A+(A0−A)−A0]+as(s+sc−s0)−T
(
lngs,A + lngsc,Ac− lngs0,A0

)
+ p∆V (27)

∆V is the volume change between the initial and final configurations. All terms∝ A cancel. In the limitA0→∞, sc≈ s0
and lngsc ≈ lngs0 leaving only the cluster’s contribution to the∆G. The volume change for the lattice gas is

∆V = a1 [A+(A0−A)−A0]+ l(s+sc−s0) (28)

wherea1 is the geomertrical prefactor relating the cluster volume to the cluster numberA andl is the interaction range
between two constituents, one spacing on a lattice:l = 1. The second term of Eq. (28) arises from the fact that no two
clusters can come within a distancel of each other and be considered two clusters, thus each cluster has a volumels
surrounding it which is excluded to all other clusters.

In in theA0 → ∞ limit the first term of Eq. (28) cancels. The second term of Eq. (28) depends only on the cluster’s
surface. Writing the partition function for a cluster asqs(V,T) ∼ exp(−∆G/T) [18] and now including the excluded
volume factor from Eq. (28) gives

ns(T)∼ gsexp
(
−ass

T

)
exp

(
2pcoexls

T

)
∼ g0s−x exp

[
−s(as−Tbs+2pcoexl)

T

]
. (29)

The factor of two arises from moving the cluster from one phase to the other: imagine taking a cluster from the
condensed phase, which leaves behind a bubble, and placing it in dilute phase. Both the bubble in the condensed phase
and the cluster in the dilute phase have the associated excluded volume contribution ofls.

Just as above, the “microscopic” portion of the surface free energy vanishes at the critical point so

Tc =
as+2pcl

bs
=

as

bs
+

2pcl
bs

. (30)

The first term in Eq. (30) can be thought of as the “ideal” critical temperature and the second term can be thought of
as the correction that arises due to the finite volume of the cluster. Working at the critical point withpc ≈ 0.11 for the
d = 2 Ising model, Eq. (30) givesTc = 2.29, within 1% of the Onsager value.

Equation (29) also provides a good description of Ising cluster yields. Figure 7 shows the Ising yields (nA(T) =
∑sns,A(T)) of a two dimensional square lattice of sideL = 80 and the predictions of Eq. (13) and (29) (both
at coexistence and both using the directly countedgs,A combinatorics of the self-avoiding polygons) withno fit
parameters.

Figure 7 also shows the integrated quantities of the density and pressure along the coexistence line for thed = 2
Ising system. The values ofρcoex and pcoex determined from calculations on the square lattice [148] (open circles),
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from Eqs. (19) and (13) (filled circles) and from Eqs. (19) and (29) (filled squares) are compared to the analytical
solution of Onsager (solid line). To calculate the pressure and density from the self-avoiding polygon combinatorics
and the finite cluster volume concentration, the equations

pcoex= T ∑
s,A

gs,Aexp

[
−s(as+2pcoexl)

T

]
andρcoex= ∑

s,A

Ags,Aexp

[
−s(as+2pcoexl)

T

]
. (31)

were solved iteratively usingas = 2 and the directly countedgs,A [126]. As one might expect, at low temperatures,
where the dilute phase is very dilute, the “ideal” expressions of Eqs. (19) and (13) work quite well. However as the
temperature increases and more and more clusters appear in the dilute phase the “ideal” expressions fail and predict, as
expected based on the cluster concentration predictions, pressure and density values that are higher than the Onsager
solution. The finite volume expressions of Eqs. (19) and (29) follow Onsager’s solution and the Ising calculations
more closely. The conclusion of this exercise is that a∼ 10% change inTc from the “ideal” estimate is enough to
approximately offset any effects of the finite volume of the clusters. Thus by leavingTc as a free parameter when
fitting cluster concentrations, or by obtainingTc from other methods, one escapes, for the most part, any problems that
arise from the finite volume of the clusters.

Summary

We have seen that Fisher’s model is a physical cluster model. Fisher’s main contribution was to introduce an accurate
approximation for the entropic contribution to the cluster partition function. This lead to the development of a model
that shows both types of scaling: the singular behavior of quantities near that critical point and the scaling laws that
relate exponents as well as the data collapse of cluster concentrations. Fisher’s model has an unphysical surface tension
above the critical temperature, however belowTc it serves as a good approximation that lends itself easily to a physical
interpretation. Though Fisher’s assumption about the mean surface of a cluster is crude (using a constant values for
a0 andσ ignores the temperature dependence of the mean surface of a given cluster size) and it explicitly ignores the
finite volume of the clusters (though implicitly the finite volume is almost all accounted for by the proper choice of
Tc) it has successfully: described cluster production in percolating systems and Ising systems (see above); reproduced
the compressibility factor at the critical point (see above); predicted (within a few percent) the compressibility factor
of real fluids from the triple point to the critical temperature [12, 52]; and has been used to describe the nucleation rate
of real fluids [14, 42].



A BRIEF HISTORY OF EXPERIMENTAL NUCLEAR CLUSTER PRODUCTION

I n the beginning there was neutron evaporation[1, 2], and the evaporation was good[4]. . .

It was noted long ago that statistical methods could be applied to nuclear processes if the energies involved are
large when compared to the lowest excitation energies of nuclei [1]. By doing this, Weisskopf was able to formulate
expressions for the probability of neutron (or charged particle) emission from excited nuclei. Weisskopf based his
work on the formula for the probability of evaporation from a body at low temperatures. In that regard, Weisskopf was
working out the formula to describe the evaporation of neutrons from a hot nucleus, i.e. he was describing a first order
phase transition in nuclear matter with a neutron leaving the condensed phase (the hot nucleus) and entering the dilute
phase (a very low density neutron vapor).

Following Bohr, Weisskopf divided processes initiated by nuclear collisions into two stages: the first was the
formation of a compound nucleus and the second was the disintegration of the compound nucleus. Both stages could
be treated independently. The energy of the compound nucleus is similar to the heat energy in a solid or liquid and
the emission of particles from the compound nucleus is analogous to an evaporation process and Weisskopf derived
a general statistical formula for the evaporation of particles from an excited compound nucleus (with the caveats of
the finiteness of the nucleus and the fact that the evaporation of a particle takes away significant energy from the
compound nucleus).

The probability per unit time of a nucleusA0 with excitation energyE∗ emitting a neutron of massm with kinetic
energy betweenE andE + dE (wherede is much larger than the levels ofA0), thus transforming itself into nucleus
Ac with an excitation energyE∗−E0−E (whereE0 is the neutron binding energy ofA0) is

Wn (E )dE = σ (E0,E )
mE

π2h̄3 exp

{
−E −T [lng+SA−SB− f (E )]

T

}
dE (32)

whereσ (E0,e) is the mean cross section for the collision of a neutron of kinetic energye with nucleusAc of energy
E∗−E0−e resulting in the production of nucleusA0 of energyE∗; g is the number of states for the spin of the particle
under consideration;S(E) = lnω(E) corresponds to the entropy of a nucleus with and energy betweenE andE +dE
(and density of levelsω(E)); T is the temperature at whichE is the most probable energy of nucleusAc; and f (e)
“contains all further terms of the development.” The probability per unit time for the evaporation of particles of charge
Z from nucleusA0 is

WP (E )dE = πR2
0

(
E −e2 Z0Z

R0

)
m

π2h̄3 exp

−E +e2 Z0Z
r −T

[
lng+SA−SB− f (E −e2 Z0Z

R0
)
]

T

dE (33)

whereR0 is the radius of the compound nucleus andZ0 is its charge. It is no surprise, given that Weisskopf had
evaporation in mind, that equations (32) and (33) are similar to Fisher’s estimate of the cluster partition function given
in Eq. (9).

Multiplying the total probability of particle emission bȳh then gives the decay width: for neutrons:

Γn = σ
m

π2h̄2 T2exp(lng+SA−SB) (34)

(whereσ is the mean value ofσ (E0,E ) f (E ) averaged over the Maxwell distribution) and for charged particles

ΓP = σ0
m

π2h̄2 T2exp(lng+SA−SB) . (35)

Thus Weisskopf developed a theory of nuclear evaporation, i.e. a theory of first order phase transition in finite, charged,
asymmetric nuclear matter.

Experimental evidence of neutron evaporation appeared in the energy distributions of neutrons measured after
various nuclei were bombarded with 190 MeV protons [4]. Equation (32) gives the probability of the evaporation of a
single neutron from a single compound nucleus at a specific excitation energy. However, experimental measurements
of neutron kinetic energy distributions were measured for neutrons that came from a cascade of successive evaporations
from compound nuclei with a distribution of initial excitation energies. Thus to connect Eq. (32) with the experimental
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FIGURE 8. The scaled energy distributions of neutrons (Wn(E )
σ(E0,E )E 1−i vs. E ) evaporated from (left to right): Al, Ni, Ag and Au

nuclei after bombardment from 190 MeV protons [4]. The slopes of the lines give the inverse of the effective temperature of
evaporation.

measurements the successive neutron (and proton) evaporation and distributions of initial excitation energies had to be
taken into account which gives [4]

Wn (E )dE ∝ σ (E0,E )
(

E

T

)i−1

exp

(
−E

T

)
1
T

dE (36)

wherei is the generation of the evaporation. Figure 8 shows logarithmic plots of scaled neutron energy distributions
( Wn(E )

σ(E0,E )E 1−i vs. E ) follow a straight line whose slope is the inverse of the effective temperature of evaporationT.
The plots in Fig. 8 are similar to the Arrhenius plots of nuclear cluster yields observed much latter [72], as such they
present early evidence for thermal scaling in nuclear evaporation.

If the analogous behavior of evaporation from excited nuclei and evaporation of classical fluids holds, then one
expects that as the temperature increases the first order phase transition (evaporation) becomes a continuous phase
transition at a critical temperatureTc above which there is a smooth cross over from the condensed phase to the dilute
phase. Thus, when inclusive cluster yields from the reaction of 80≤ Ebeam≤ 350 GeV protons incident on krypton
and xenon nuclei exhibited a power law (as expected fornA(Tc) in Eq. (13)) with an exponent between 2 and 3 (as
expected ford = 3 systems [20]) it seemed possible that the critical temperature had been reached [24, 26, 27].
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