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Phase-transitions in conventional
(grand-canonical) statistics in the

thermodynamical limit:
Yang-Lee singularities. Why?

−→Only homogeneous configuration ←−

Physical reason for phase transitions:
−→Internal surfaces, inhomogeneities ←−

What is the difference between

Solid Liquid Gas

have internal surfaces no surface

condensate volume less than external volume fills any volume

surface has edges, surface has no edges,

is hard, fixed flexible, adjusts to container
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Effect of surfaces on entropy:

Boltzmann-Planck :

S=k*lnW(E)

S(E) � Nsvolume(e)−N2/3ssurface(e)+ · · ·
concave �

ssurface(e) ∝ σ(e)
T
×area/atom

−→convexity ←−
! No scaling !

No unique T ⇒ E
No canonical distribution, no T , no µ

The essence of first order phase transitions:
−→Phase separation ←−

bimodality
The essence of difference

between states of aggregation
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FIG. 4. The reduced density-temperature phase diagram: the
thick line is the calculated low density branch of the coexistence
curve, the points are selected calculated errors, and the thin lines
are a fit to and reflection of Guggenheim’s equation.

Elliot et al.
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Here S(E)− βE has at least two extremes.
The two phases

Example: Atomic clusters

N0 200 1000 3000 bulk

Ttr [K] 940 990 1095 1156

qlat [eV ] 0.82 0.91 0.94 0.923

Na sboil 10.1 10.7 9.9 9.267

∆ssurf 0.55 0.56 0.44

Nsurf 39.94 98.53 186.6 ∞
σ/Ttr 2.75 5.68 7.07 7.41
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Convexity, negative heat capacity necessary
signal for a phase transition of first order.

Canonical statistics unable to describe
phase-separations.

Heat flows from cold to hot!
No peculiarity of gravitating systems!
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Here the most interesting Thermodynamics:
is hidden behind Yang-Lee ”singularity”:

Original task of Thermodynamics was the
explanation of steam engines

Here boiling water experiences phase
separation

and becomes inhomogeneous

Canonical, homogeneous description fails !
No intensive T ,µ,P

No Boltzmann-Gibbs

⇒ THIS CAN BE LEARNED FROM
NUCLEAR FRAGMENTATION⇐
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Phase-separation in hot nuclei:
Evaporation�→ Fission�→

Multifragmentation�→ Vaporization
This is all lost in conventional (canonical)

statistics.

Facts that resolved meanwhile from
experiments:

1. at E∗ ≤ 5MeV ∗ A:
evaporation of light fragments

{e.g.Au∗, Viola et al PRL 93.132701 (2004)}
2. above E∗ ≥ 5MeV ∗ A:

source expands ⇒ ρ/ρ0 ∼ 0.2,
equilibrize and decays by multiple IMF’s

I.e. sudden rise of entropy S(E),
phase-space filling due to

multiple, sudden, production of interfaces
as predicted by statistical models

This is a beautiful laboratory to study
phase transitions by creation of surfaces.
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Other example:
Atomic cluster fragmentation give

detailed insight into region
of phase-separation, here no Coulomb

�→ most interesting physics

FIG� �� Same as � but for Na������ The four small �gures at the top show the mass distribut

of fragments at four di�erent excitation energies which are indicated in the main �gure by th

number� The small vertical numbers on top of the mass�distributions give the real number

fragments e�g�� ����	�
 means there are ��	�
 dimers on average at � � ��

�eV�atom�
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Stars and galaxies

Cover page of
Phys.Rev.Lett. vol 89, (July 2002)

Phys. Rev. Lett. Vol   Page/Article:  
Retrieve

 

Contour plots and density profiles
of a rotating, self-gravitating
N-body system showing the
formation of a stable double cluster
(left) and an unstable ring (right) at
different energies. The
double-cluster structure illustrates
the spontaneous breaking of
rotational symmetry at intermediate
energy and high angular
momentum. 

Read the Article 

Back

E.V. Votyakov et al.
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Phase diagram of
self-gravitating and rotating system

intensive Ω : Erandom = E − ΘΩ2

2
− Epot

extensive L : Erandom = E − L2

2Θ
− Epot.
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Microcanonical Entropy

W (E, N,V) =

1

N !(2π�)3N

∫
VN

d3N →
r i

∫
d3N

→
pi δ[E −

N∑
i

→
p

2

i

2mi

− V int{→r i}] =

VN(E − E0)
(3N−2)/2

∏N
1 m

3/2
i

N !Γ(3N/2)(2π�2)3N/2

∫
VN

d3Nri

VN

(
1− V int{→r i} − E0

E − E0

)(3N−2)/2

= W id−gas(E − E0, N,V)×W config(E − E0, N,V)

= e[Sid−gas+Sconfig]

Rigorous split into ideal gas and configuration entropy

W config(E − E0, N,V) =

[V(E)

V
]N

≤ 1

[V(E)]N
def

=∫
VN

d3Nri

(
1− V int{→r i} − E0

E − E0

)(3N−2)/2

Sconfig(E − E0, N,V) = N ln

[V(E)

V
]
≤ 0

Sconfig(E − E0) →

 0 E 	 V int

ln
{
[V0
V ]N−1

}
< 0 E → E0

All interesting phenomena of Thermodynamics
are encrypted in Sconfig
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Statistical Mechanics of inhomogeneities,
no scaling,

phase transitions≡ the physics of interfaces
(also multifragmentation) :

Solid Liquid Gas

have internal surfaces no surface

condensate volume less than external volume fills any volume

surface has edges, surface has no edges,

is hard, fixed flexible, adjusts to container

Research is not to think what everybody else has thought,
but to see what everybody else has seen.
� Albert Szent-Gyorgi(1893- 1986)

Moral:
Conserved quantities

⇒ only microcanonical⇐
If the mechanism mixes different

constraints (e.g. volumes) then its physics
determines the weights p(V ) not any

arbitrary Lagrange parameter (or belief !)
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