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Conventional thermo-statistics address infinite homogeneous systems within the canonical ensemble. How-
ever, some 150 ears ago the original motivation of thermodynamics was the description of steam engines,
i.e. boiling water. Its essential physics is the separation of the gas phase from the liquid. Of course,
boiling water is inhomogeneous and as such cannot be treated by conventional thermo-statistics. Then it
is not astonishing, that a phase transition of first order is signaled canonically by a Yang-Lee singularity.
Thus it is only correctly treated by microcanonical Boltzmann-Planck statistics. It turns out that the
Boltzmann-Planck statistics is much richer and gives even analytical insight into the statistical mechanics
of condensation or, complementary, fragmentation phenomena and especially into entropy.

In this talk I will give the physical meaning of entropy and present a new statistical interpretation of the
second law. Eventually I will explain why there is a critical end-point for the liquid-gas phase-coexistence
while there seems to be none for the solid-gas one. Then I will illuminate the deep and essential difference
between “extensive” and “intensive” control parameters, i.e. microcanonical and canonical statistics,
exemplified by rotating, self-gravitating systems.
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Most Fundamental,
Straight,

Simplest way to Thermo-Statistics :

Macroscopic Information
is redundant microscopically
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Microcanonical ensemble ≡ set of points in:

W (E,N, V ) = ε0trδ(E − HN )

trδ(E − HN ) =

∫
d3Np d3Nq

N !(2π�)3N
δ(E − HN ).

Thermodynamics addresses the whole
ensemble

Its geometrical size

S=k*lnW

measures our ignorance of the complete 6N
degrees of freedom.

(Boltzmann-Planck)

This is the physical meaning of entropy.
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Conventional Boltzmann-Gibbs statistics
address homogeneous, infinite systems.

It is thus unable to describe
phase-separation as e.g. boiling water.

Ptr(E) = eS(E)−E/Ttr
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Microcanonical Entropy

W (E, N, V) = eS(E) =

1

N !(2π�)3N

∫
VN

d3N →
r i

∫
d3N

→
pi δ[E −

N∑
i

→
p

2

i

2mi

− V int{→
r i}] =

VN(E − E0)
(3N−2)/2

∏N
1 m

3/2
i

N !Γ(3N/2)(2π�2)3N/2

∫
VN

d3Nri

VN

(
1 − V int{→

r i} − E0

E − E0

)(3N−2)/2

= W id−gas(E − E0, N, V) × W conf(E − E0, N, V)

= e[Sid−gas+Sconf ]

Rigorous split into ideal gas and configuration entropy

W conf(E − E0, N, V) =

[V(E)

V
]N

≤ 1

[V(E)]N
def

=∫
VN

d3Nri

(
1 − V int{→

r i} − E0

E − E0

)(3N−2)/2

Sconf(E − E0, N, V) = N ln

[V(E)

V
]

≤ 0

Sconf(E − E0) →
{

0 E � V int

ln
{
[V0

V ]N−1
}

< 0 E → E0
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Sid−gas(E) ∼ 3N

2
ln{E}

is concave in E

Upwards jump (convexity) of configuration
entropy where the droplet either fissions

into two droplets or evaporates one particle.

There one additional cm-dof moves in the
larger volume V − V0(N−1)

δ∆Sconf ∼ ln{
V − V0(N−1)

V0(N−1)
}
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Critical end point:

Where the curvature S′′
total(E) = 0

or the up-bend of the configuration entropy
δ∆Sconf equals the down-bend of the ideal
gas entropy due to its concave curvature

δ∆Sid−gas:

S′′
total(E) = 0

= S′′
conf + S′′

id−gas
∼ δ∆Sconf − δ∆Sid−gas
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Stars and galaxies

Cover page of
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Retrieve

 

Contour plots and density profiles
of a rotating, self-gravitating
N-body system showing the
formation of a stable double cluster
(left) and an unstable ring (right) at
different energies. The
double-cluster structure illustrates
the spontaneous breaking of
rotational symmetry at intermediate
energy and high angular
momentum. 

Read the Article 

Back
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Phase diagram of
self-gravitating and rotating system

intensive Ω : Erandom = E − ΘΩ2

2
− Epot

extensive L : Erandom = E − L2

2Θ
− Epot.

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4
E

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L

DC

G

SC

Mixed
Phase

9



Va Vb

t < t0

−→ Va + Vb

t > t0

Second Law of Thermodynamics

Problem:
Due to Liouville Hamilton dynamics is

area-conserving.
Thus one has to redefine Boltzmann’s W .

Main idea:
Calculate W (E) not as Riemann (or better
Lebesgue) integral but by ”box-counting”
which gives the area of the closure of W :

Thus W (t → ∞) = Wa+b. Thus any
subjectivity is avoided.
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Conclusion:

All interesting Thermodynamics is
encrypted in

Sconf(E)

Only microcanonical Thermodynamics
allows to describe phase transitions

of first order
thus it fulfills the original task of

Thermodynamics

This is possible only by the use of
“extensive” order parameters

intensive T, P, µ
not suited for inhomogeneous systems
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Open problems:

• Second law: more thoughts about spin-
echo experiment.

• Gravitation: How to avoid closed bound-
aries ⇔ evaporation ?

• Cosmology: Relation field theory ⇔ ex-
tensive thermodynamics.

• Black hole entropy ∝ surface.

• Nuclear fragmentation:
Correlation between freeze-out volume and
size distribution.
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