Deconfinement Transition vs Nuclear Liquid Gas Transition

K. A. Bugaev, J. B. Elliott, L. G. Moretto and L. Phair LBNL, Berkeley, California, USA

Early Hadronization at SPS

Fit of m_T spectra $T_{fr} = 170 \pm 10$ MeV, $\bar{v} = 0.2$ Consistent with fit K.A.B. et al., PRL 88 (2002)

Early Hadronization at RHIC $\sqrt{s}_{NN} = 130$ GeV

Early Hadronization (weak flow) is similar to Compound Nucleus

At RHIC flow is stronger \rightarrow shape is not exponential

 γ_i is suppression factor

Caloric Curves

Plateau-like caloric curves signal I-order transition?

Inverse slopes: K[±] mesons Gorenstein,Gazdzicki,Bugaev, PL B 567 (2003)

Temperatures: Fragments of 30 - 240 nucleons J. Natowitz et. al., PRC 65 (2002)

Updated Signals Found by NA49

Kink in $\frac{\langle \pi \rangle}{\langle N_w \rangle} \approx g^{\frac{1}{4}}F$ shows that the number of d.o.f. g changes at about $E_{lab} = 30 \text{ GeV}$

Horn in $\frac{\langle K^+ \rangle}{\langle \pi^+ \rangle}$ ratio shows that elementary d.o.f. of strangeness are changing from K[±] to s_q at about $E_{lab} = 30 \text{ GeV}$

Step in K[±] inverse slopes shows that $\approx F$ independent initial pressure develops at about $E_{lab} = 30$ GeV

What Can We Learn from Signals?

Can SPS signals distinguish I-order phase transition from strong Crossover? No

But:

RHIC community knows the deconfinement phase diagram from non-perturbative approaches: Lattice QCD at $\mu_b \rightarrow 0$ and Hard (Thermal) Loops at $T \rightarrow 0$.

 \Rightarrow We must essentially strengthen theoretical studies!

At most we can see an evidence for other (new) d.o.f.

 \Rightarrow The most promising approach is to build up a microscopic kinetics of phase transitions in small systems

Both communities face similar problems

 \Rightarrow Multifragmentation is indispensable for this task because experiments are cheaper and easier, and signals are not affected by strong flow