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where !0 can be interpreted as the frequency of assault on

the barrier B and T is the temperature of the system. Defining

the intrinsic "0 as 1/!0, the corresponding emission time is

given by

"!"0e
B/T therefore p!"0 /" . #5$

The IMF emission time for this reaction has been ex-

tracted by Beaulieu et al. %33& using excitation-energy-gated
two-IMF correlation functions and an IMF range defined as

4'Z IMF'9. The result of that analysis is summarized in the
upper panel of Fig. 4. The emission time " decreases expo-
nentially with E*/A up to about 6A MeV and saturates af-

terward at "(20 fm/c . The solid line is a fit to the data using
Eq. #5$. The obtained barrier B is found to be around 41

MeV and is larger than the one extracted from the 1/p vs

1/!E*/A plot by a factor of 2 for the same Z IMF range, with
B!!21 MeV and the same level-density parameter. From

Eqs. #4$ and #5$ one would expect the barrier to be the same.
However, it is known experimentally that the values of p

follow the minimum charge of the IMF range, here Z!4,
and as such in the above interpretation each IMF charge

would have different emission time %13,14&. In contrast, for

the emission time scale extracted from IMF-IMF correlation,

it is assumed that each IMF species have the same emission

time. Therefore the relation between " and p might not be
straightforward.

Still using the above definition for IMFs, the binomial

analysis was redone for the same excitation energy bins as in

the time scale analysis. The reciprocal of the extracted pa-

rameter p is shown in the bottom panel of Fig. 4 as a func-

tion of the emission time " . As predicted by Moretto et al.
%12,14&, 1/p is well represented by a simple linear relation to
the emission time down to about 20 fm/c , corresponding to

E*/A(6A MeV. At higher excitation energy, the extracted
time saturates while 1/p still decreases. For completeness,

values of 1/p at higher excitation energy are shown as open

squares. Because of the limited statistics, it was not possible

to extract emission time at these excitation energies. How-

ever, since " is nearly constant with a value of 20 fm/c

above E*/A!6 MeV, a value for " of 20 fm/c was assigned
to each value of 1/p . The evolution of 1/p at that point seems

independent of time, which would argue for a spacelike in-

terpretation of p, rather than sequential, at high excitation

energy %14&. Therefore the break in this linear behavior of
1/p vs " suggests the possibility of a change in the emission
mechanism from a sequential process #surface dominated
emission$ to a simultaneous process #bulk emission$. This
conclusion was reached recently for this data set %33& by
looking at the global behavior of the time, thermally driven

expansion energy and IMF emission probability.

Finally, the parameter "0, extracted in the upper panel,
corresponds to the infinite temperature limit, and the extrapo-

lation of the exponential fit as such has little meaning. In the

bottom panel, "0 is represented by the slope, and its value of
11.7 fm/c is more in line with what could be expected for a

characteristic emission time #fluctuation time$ and is very
close to the experimentally measured saturation in the emis-

sion time.

In conclusion, we have shown the applicability of the bi-

nomial reducibility analysis and thermal scaling on a refer-

ence data set obtained in hadron-induced thermal multifrag-

mentation. For such well-characterized systems, the n-fold

IMF probability distributions can be described by the bino-

mial equation. As long as the first-stage cascade particles are

removed, linear plots of ln 1/p vs 1/!E*/A are found. We

have shown that the parameter m acts as an energy constraint

that is related to and tracks with the changes in the average

Qvalue . Finally, this analysis is consistent with a picture in

which p reflects the elementary probability of the system, the

source size has little influence on p, and p has the expected

correlation with the emission time in a time sequential inter-

pretation up to (6A MeV. The sudden change of the 1/p
versus " plot at very short emission times might suggest a
transition in the mechanism from sequential emission to si-

multaneous multifragmentation at high excitation energies.

At the very least, it can be concluded in this picture that the

emission times have reached values close to the characteris-

tic time "0. Further investigation is needed to assess the
validity of this interpretation. In particular, exploring the

FIG. 4. Top panel: IMF emission time " as a function of E*/A ,
from Ref. %33&. The line corresponds to a fit using Eq. #5$. Bottom
panel: Graph of 1/p vs " for the same bins in E*/A as in the upper
panel. The solid line is a linear fit to the data. The dotted line

indicates the ‘‘apparent’’ saturation in emission time.
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FIG. 3. Middle and upper panels: The average yield per event
of different elements (symbols) as a function of 1!

p
Et . Bottom

panels: The Xe 1 Au data at 50A MeV are replotted using the
transverse energy of all charged particles excluding the Z that
we have selected, EZ

t (left), and (right) that only of the light
charged particles, ELCP

t . The lines are fits to the data using a
Boltzmann form for "nZ#.

The advantage of considering individual Z selected

fragments is readily apparent. For any given reaction, both

Poissonian reducibility and thermal scaling are verifiable

not just once, as in the binomial analysis, but for as many

atomic numbers as are experimentally accessible. Take,

for example, the Ar 1 Au reaction (E!A ! 110 MeV)
shown in the top right panel of Fig. 3. For this specific

reaction, we can verify both reducibility and thermal

scaling for 12 individual atomic numbers. Since there

are 29 Et bins, Poissonian reducibility is tested 29 times

for each Z value; i.e., 12 3 29 ! 348 times for this

reaction alone. Including all of the cases shown in Fig. 3,

we have tested Poissonian reducibility 936 times. This

is an extraordinary level of verification of the empirical

reducibility and thermal scaling with the variable Et .

Two added bonuses arise from this procedure.

(1) The criticism has been raised that the linearity of

the Arrhenius plots arises from an autocorrelation, since

the complex fragments also contribute to Et [13]. In the

present analysis this criticism can be dismissed, since each

individual Z contributes a vanishingly small amount to

Et (#5%), even in the region of maximum yields. Still,

to be sure that there is no autocorrelation in Fig. 3, we

have repeated the analysis, for Xe 1 Au at 50A MeV, by
(i) removing from Et the contribution of the individual Z
(EZ

t ) that we have selected (Fig. 3, bottom left panel) and

(ii) using only the Et of the light charge particles, ELCP
t

(Fig. 3, bottom right panel) . In both cases, the Arrhenius

plots remain linear over almost the entire range of Et and

cover 1 to 2 orders of magnitude. Quantitatively, the rate

of change of the slopes with Z remains the same regardless
of the definition of Et , as shown in the top panel of Fig. 4.

This behavior is expected if the slopes are related to some

physical barriers.

In our attempt to avoid autocorrelation by excluding

from Et all IMFs (ELCP
t ) or the Z value under investigation

(EZ
t ), we have introduced another kind of distortion. Ex-

cluding from Et all fragments of charge Z to produce EZ
t

necessarily requires that, for those events where EZ
t $ Et ,

the yield nZ ! 0. This produces the visible turnover of
the Arrhenius plots in the bottom panels of Fig. 3 (the same

argument also applies to ELCP
t ). It has been verified ex-

perimentally that the maximum values of the new Et scale

do indeed correspond to events in which the contribution

from a given Z (or all IMFs) is absent.
(2) The extracted elementary probability is now "n# !

"mp# which, contrary to p and m, is very resilient to any
averaging associated with the transformation from E! to

Et [10,11].

FIG. 4. Top panel: Slopes of the Arrhenius plots, normalized
to Z ! 6, for Xe 1 Au at 50A MeV as a function of Z using
the indicated definitions of Et . Bottom panel: The Z dependent
barriers (the slopes of the Arrhenius plots in Fig. 3). The
barriers have been scaled relative to Z ! 6 of the Xe 1 Au
data. Black dots are low energy conditional barriers from
Ref. [21] (black dots) normalized to Z ! 6 of Xe 1 Au.
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ever, high temperature expansion techniques have yielded

a value of Tc=4.511 52±0.000 04 J/kB !38".
The zero-field Ising model is isomorphous with the lattice

gas model [39,40]. The positive spins are mapped to unoc-
cupied sites in a lattice gas and the negative spins are

mapped to occupied sites. The phase transition is then analo-

gous to a liquid-vapor phase transition. If a correspondence

is observed between features of the Ising model and nuclear

multifragmentation, it could strengthen the case for nuclear

multifragmentation being the signature for a liquid-gas phase

transition of excited nuclei.

In the present study, the calculations were performed via a

code using standard Monte Carlo techniques [41]. For each
lattice configuration, a random initial configuration of spins

and a temperature were selected. Thermalization was reached

via the Swendsen-Wang cluster spin-flip algorithm [23] us-
ing the Hoshen-Kopelman algorithm for cluster identifica-

tion. After the system was thermalized, “geometric” clusters,

i.e., nearest-neighbor-like spins, were identified (also using
the Hoshen-Kopelman algorithm) and then the Coniglio-
Klein algorithm [19] was used to break the geometric clus-
ters into “physical” clusters. The code was tested against the

published results both in Ref. [41] and in other literature.
Since we are interested in studying liquid-vapor coexistence,

all calculations are performed at zero external field #Hext

=0$. The lattice contains 503 spins, and periodic boundary
conditions are used to minimize finite size effects. The use of

the Swendsen-Wang algorithm and Coniglio-Klein clusters

gives us hope that the clusters analyzed in this work are most

closely related to the physical clusters observed in fluids and

do not suffer from problems such as the percolating critical

point reached away from the thermal critical point or the

presence of the Kertész line [13,21].
Our intent in this paper is not to study large (or not so

large) Ising lattices to increase the already vast accumulation
of large lattice Ising simulation papers. Rather it is to show

that like the experimental nuclear multifragmentation yields,

the Ising model contains reducibility and thermal scaling and

(approximately) obeys the scaling inherent in the Fisher
droplet model (which also contains reducibility and thermal
scaling). To do this we chose a reasonably large lattice with
periodic boundary conditions to free ourselves (as much as
possible) from the complicating effects of finite size, but not
so large a lattice that computation time would be prohibitive.

We now proceed to analyze the cluster yields in the same

way as has been done with nuclear multifragmentation data

[1–4]. We shall consider first whether the multiplicity distri-
butions for individual clusters manifest Poissonian reducibil-

ity. Figure 1 shows the multiplicity distributions for a sample

of cluster sizes and temperatures. The solid lines represent

Poisson distributions calculated from the corresponding

mean multiplicities. The distributions are nearly Poissonian

not only for the cases shown, but for all sizes and all tem-

peratures. Poissonian reducibility is empirically verified in

the Ising model.

This signifies that the probability of finding m clusters of

size A depends only on the probability of finding one cluster

of that size and is nearly independent of the probability of

finding clusters of any other size. This feature is also ob-

served in percolation models and nuclear fragmentation [4].
If the cluster distributions exhibit thermal scaling, the dis-

tributions must be of the form given in Eq. (1). Thus in an
Arrhenius plot [a semilog graph of the number of clusters of
size A #nA$ vs 1/T], the distributions should be linear.
As shown in Fig. 2, this is indeed the case over a wide

range of temperatures #0!T!Tc$ and cluster sizes. While
we have shown distributions for clusters up to size A=100,

the trend continues for larger clusters, but with poorer statis-

tics. This linearity extends over more than four orders of

FIG. 1. The probability distributions for obtaining m clusters of

size A at the three temperatures indicated. The solid lines are Pois-

son distributions with means given by the Monte Carlo data.

FIG. 2. (Color online) Arrhenius plots of the cluster distribu-
tions. A statistical error bar is shown when it exceeds the size of the

data point. The lines are fits of the form given in Eq. (1). The
critical temperature is indicated by the dashed line.
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