Modeling the EOS

Christian Fuchs¹ & Hermann Wolter²

¹ University of Tübingen/Germany
 ² University of München/Germany

Eberhard Karls Universität Tübingen

• Overview models

- Overview models
- Symmetric nm

- Overview models
- Symmetric nm
- Isospin dependence

- Overview models
- Symmetric nm
- Isospin dependence
- Constraints from HICs

Overview models

Ab inito approaches

Brueckner: BHF (Catania,..), DBHF (T^{ubingen,..)}, variational appr. (Urbana) realistic NN-interaction, no parameters

Effective field theory

Density functionals (Furnstahl, Serot,...), ChPT (Weise) peturbativ, scale arguments ($m_{\pi}/M, k_F/M$), few parameters (< 2)

Empirical density functionals

Skyrme, Relativistic Mean Field many parameters (6-10), high precison fits to finite nuclei

Saturation of Nuclear Matter

DBHF: realistic NN force, no parameter

r

:

Coester line \implies relativistic!

Hadronic many-body theory

Relativistic Brueckner: N+OBEP ($V = \sigma, \omega, \pi, \rho, \eta, \delta$) \implies 2-N correlations in hole-line expansion \implies self-consistent sum of ladder diagrams

Dyson-Equation: $G = G_0 + G_0 \Sigma G$

Bethe-Salpeter-Equation: $T = V + i \int V G G Q T$

$$\mathbf{T} = \mathbf{I} + \mathbf{I} \mathbf{T}$$

Self Energy (Hartree-Fock): $\Sigma(\rho, k) = \sum_{q \in F} \langle q | T(q, k) | q \rangle = \Sigma_S - \gamma_0 \Sigma_0 + \vec{\gamma} \cdot \vec{k} \Sigma_V$ $\Sigma = \Gamma - \Gamma$

Saturation mechanism

- Non-relativistic:
 - tensor force essential

2nd order $1 - \pi$ -exchange: large and attractive Pauli-blocking \implies saturation

• Relativistic:

tensor force quenched Banerjee & Tjon NPA 708 (2002) 303 cancellation of large scalar and vector fields difference of vector and scalar density \implies saturation principally similar to RMF theory

C.F., Lect. Notes Phys. 641 (2004) 119

BHF versus DBHF

BHF: 3-body forces necessary (Zuo et al., NPA 706 (2002) 418)

All microscopic EOS are soft !

Example for EFT: ChPT ChPT: pion dynamics + cut-off \implies expansion in k_F : \implies soft EOS fine tunig to finite nuclei: \implies hard EOS

ChPT: Finelli et al. NPA 735 (2004) 449

DBHF: Gross-Boelting, C.F., Faessler, NPA 648 (1999) 105

Neutron matter EOS

DBHF EOS is soft (K=230 MeV); but asy-stiff

Symmetry energy from Skyrme

Baran, Di Toro et al. nucl-th/0412060

Symmetry energy

$$E_{\text{sym}}(n_B) = \frac{1}{2} \left[\frac{\partial^2 E_b(n_B, \beta)}{\partial \beta^2} \right]_{\beta=0} \simeq E_b(n_B, \beta=1) - E_b(n_B, \beta=0)$$

$$\beta = Y_n - Y_n$$

model	E_{sym} [MeV]
Skyrme	<30
Skyrme (SkLy)	32
RMF	32-36
DBHF (Bonn A)	34.4
Lenske (Bonn C)	28
ChPT (Finelli et al.)	34

RMF: Vretenar et al., PRC 68 ('03) 024310

Christian Fuchs - Uni Tübingen – p.11/20

Neutron-proton mass splitting

Comparison of different approaches \implies careful ! Many different definitions of effective masses are used!

Dirac mass:

$$m_D^* = M + \Sigma_S$$

Relativistic: $U_{s.p.} \simeq \frac{m_D^*}{E^*} \Sigma_S + \Sigma_0$

Neutron-proton mass splitting

- BHF: $m_{NR,n}^* > m_{NR,p}^*$
- RMF:

$$m_{D,n}^* < m_{D,p}^*; \ m_{NR,n}^* < m_{NR,n}^*$$

$$(\rho + \delta)$$

Baran, Di Toro et al. nucl-th/0412060

 $^{\nu}D.n$

• DBHF with Σ extracted by fit method:

$$m_{D,n}^* > m_{D,p}^*$$

Alonso & Sammarunca, nucl-th/0301032

• DBHF with projection method:

$$m_{D,n}^* < m_{D,p}^*$$

 $^{\iota}NR.p$

de Jong & Lenske, PRC 58 ('98) 890, van Dalen, C.F., Faessler, NPA 744 ('04) 227

• non-rel. mass in DBHF:

$$m^*_{NR,n} > m^*_{NR,p}$$

Neutron-proton mass splitting

DBHF: van Dalen, C.F., Faessler in preparation

Constraints from HICs: Kaons

Symmetric part of EOS: Subthreshold K^+ production

Far subthreshold: highly sensitive to collective effects

Constraints from HICs: Kaons

Symmetric part of EOS: Subthreshold K^+ production

Far subthreshold: highly sensitive to collective effects

KaoS data \implies soft EOS!

C.F. et al., PRL 86 (2001) 1974

K=210 MeV ($m^*/m = 0.7/0.65$) and K=380 MeV (ruled out)

Danielewicz, NPA 673 (2000) 375

K=210 MeV ($m^*/m = 0.7/0.65$) and K=380 MeV (ruled out) Danielewicz, NPA 673 (2000) 375

Christian Fuchs - Uni Tübingen – p.16/20

• directed flow \implies momentum dependence

- directed flow \implies momentum dependence
- elliptic flow \implies density dependence

- directed flow => momentum dependence
- elliptic flow \implies density dependence

Constraints from HICs

Isospin dependence: HICs with equal mass isotopes \implies isospin diffusion: GSI (FOPI), MSU data

BUU: Chen, Ko, B-A Li, nucl-th/0407032, $E_{\rm sym} = 31.6 (\rho/\rho_0)^{\gamma}$

 EOS from ab inito calculations are soft for symmetric nm

- EOS from ab inito calculations are soft for symmetric nm
- EOS from ab inito calculations are asi-stiff

- EOS from ab inito calculations are soft for symmetric nm
- EOS from ab inito calculations are asi-stiff
- Consistent with information from hics