Actinide Targets for Super-Heavy Element Research

Presented at International Workshop on Super-Heavy Element Research SHE-15

J. B. Roberto

Oak Ridge National Laboratory Oak Ridge, Tennessee, USA

College Station, Texas March 31, 2015

OAK RIDGE NATIONAL LABORATORY

ANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERG

Outline

- Actinides and heavy element discovery
- Production and availability of actinides
 - Reactor production
 - Chemical processing
- Actinide materials for SHE research
 - Current inventories
 - Berkelium
 - Californium
 - Einsteinium
 - Novel materials
- Actinide targets
 - Fabrication
 - Projected target needs

Actinides

- Radioactive elements with Z=89-103
 - Identified as a new row in the Periodic Table in the 1940s (Seaborg)
 - Only two actinides occur naturally in substantial quantities (Th and U)
- All actinides heavier than uranium discovered using actinide targets
 - Np, Pu, Am, Cm, Bk, and Cf in the 1940s (Berkeley)
 - Es and Fm from neutron irradiation of uranium in a thermonuclear explosion (1952)
 - Md, No, and Lr in the 50s and 60s (Berkeley and Dubna)
- Production in high-flux reactors required for more than trace amounts of actinides heavier than uranium
 - Only Np, Pu, Am, Cm, Bk, and Cf available in quantities needed for SHE targets
- 9 of 15 super-heavy elements (Z=104-106, 113-118) synthesized using actinide targets
 - Most target materials from ORNL and RIAR

"Hot fusion" using ⁴⁸Ca beams on actinide targets has significantly expanded SHE research

Six new elements (Z=113-118) synthesized using ⁴⁸Ca beams on actinide targets since 2000

Element (Z)	Year first produced	Target	Beam	Nuclei produced to date (directly/ total including decay chains)
113	2004	²⁴³ Am (decay from 115)	⁴⁸ Ca	2/89 (directly in 2007 from ²³⁷ Np)
Flerovium (114)	2000	²⁴⁴ Pu	⁴⁸ Ca	64/99
115	2004	²⁴³ Am	⁴⁸ Ca	63/87
Livermorium (116)	2005	^{245,248} Cm	⁴⁸ Ca	31/35
117	2010	²⁴⁹ Bk	⁴⁸ Ca	22
118	2006	²⁴⁹ Cf	⁴⁸ Ca	4

- More than 50 new isotopes
- A total of more than 300 nuclei (Z=113-118)
- "Hot fusion" has increased SHE production rates for Z ≥ 113 by one or more orders of magnitude

HFIR/REDC: ORNL's actinide production and research complex

AGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Actinide production by irradiation of Am/Cm targets in HFIR

Targets specially designed for reactor conditions

- Composition controls fission and gamma heating
- Targets typically remain in the reactor for 3-6 cycles (up to a year)

Irradiation in the HFIR flux trap

- Intense thermal neutron flux (2.5 × 10¹⁵ neutrons/cm²·s)
- 31 target positions (6-8 targets typical for Cf production)
- Typical campaign: Up to 200mg ²⁵²Cf, 20mg ²⁴⁹Bk, ~2µg ²⁵⁴Es, picograms ²⁵⁷Fm

Target positions in the flux trap of HFIR fuel assembly

Upcoming paper on actinide production in PIK by Onegin

Inventories of selected actinides at ORNL

Isotope	Approximate amount (mg)	Isotopic %	Notes
Np-237	1000	>99%	
Pu-242	5500	>99%	
Am-241	3500	>99%	
Am-243	1000	>99%	
Cm-244	1000	>90%	
Cm-248	1700	80-95%	80 mg at >95%, remainder requires recovery processing
Bk-249	_	>99%	Requires HFIR production and chemical processing (up to 20 mg per campaign when combined with Cf-252 production)
Cf-249	170	>99%	
Cf-251	40-150	~35%	Requires recovery and processing from old Cf sources (isotopic separation required for higher enrichment)

- HFIR/REDC is a unique resource for production and chemical processing of actinides
- ORNL is the repository for actinide isotopes for DOE's Isotope Development and Production for Research and Application Program in the Office of Nuclear Physics

²⁵²Cf yield as a function of the number of reactor cycles in HFIR

- Production efficiency highest in first 2 cycles
- To maximize overall production, a typical campaign is 3-5 reaction cycles (24 days per cycle)

Bk production/separation cycle at ORNL 24 months Cf/Bk, 8 months Bk only

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

9 SHE Workshop, March 31, 2015

Bk production peaks after one reactor cycle (24 days)

- ²⁴⁹Bk yield is typically 0.6% of the ²⁴⁸Cm content of the target
- Suppressing thermal neutron flux can further increase yield

Bk-249 outlook

- Cf-252 production currently under contract is ~80 mg per campaign
 - Reduces Bk-249 yield to ~9 mg per campaign
- Increased Bk production
 - Use additional Cm-248 feedstock for one-cycle HFIR irradiations coordinated with Cf-252 production (allows leveraging of Cf processing)
 - Use thermal neutron filtering to further increase production by factors of two or more (requires development)
 - >100 mg possible, but unlikely due to resource requirements
 - 30 mg a reasonable goal assuming availability of Cm-248 feedstock

Additional details in upcoming paper by Boll

Cf isotopic distribution following production and after several decades decay

lsotope	Atomic % (as produced)	Half-life (y)
²⁴⁹ Cf	3.41	351
²⁵⁰ Cf	8.7	13.08
²⁵¹ Cf	2.60	898
²⁵² Cf	85.27	2.645
²⁵³ Cf	0.004	0.049
²⁵⁴ Cf	0.010	0.166

- After several decades, ²⁵²Cf substantially decays
- Remaining Cf a mixture of ^{249, 250, and 251}Cf, with ~35% ²⁵¹Cf (heaviest SHE target material)
- Mixed target must be handled in a shielded glove box due primarily to ²⁵⁰Cf content
- Possibility of producing two new heaviest isotopes of element 118

Cf recovered from decayed sources

Cf-249 _{mg}	Cf-250 mg	Cf-251 mg	Cf-252 mg	Total Cf
7.6	2.5	5.7	0.007	15.8
48.1%	15.6%	36.3%	0.04%	

Reestablishing isotope enrichment capability at ORNL

Electromagnetic Isotope Separator (EMIS)

- Designed and built by ORNL
- Sponsored by DOE Office of Nuclear Physics

- Currently capable of producing mg to g quantities of >98% enriched stable isotopes
- Combined with gaseous centrifuge to increase throughput
- Proposed radioactive EMIS for actinides

Revisiting the Large Einsteinium Activation Program (LEAP)

- A special HFIR campaign proposed in the 1980s to maximize production of ²⁵⁴Es
- Beginning with ~1g of ²⁵²Cf, LEAP estimated to yield 40 µg of ²⁵⁴Es
 - 300 times smaller than the typical amount of target material for SHE experiments
- Can neutron spectrum filtering increase this yield?
- ²⁵⁴Es attractive (if available) as path to element 119 (using Ca beams) and possibly 121 (Ti beams)
 - SHE Factory-scale approach essential for consideration of using ²⁵⁴Es targets
 - Significant target heating and damage considerations

Novel materials for research on extreme nuclei

- ⁶⁰Fe
 - Neutron-rich long-lived element
 - Can be produced in HFIR (~1mg per 2.5g of 65%⁵⁸Fe in 4 reactor cycles)
 - Requires isotopic separation and low-level radioactive handling
 - Interesting for supernova research and fusion reactions near shell closures, could in principle get us one neutron closer to the island
- ¹⁰Be
 - Be reflector material in HFIR enriched in ¹⁰Be from neutron irradiation (~1 mg per 10g reflector Be after 20 cycles)
 - Requires isotopic separation and Be handling
 - Interesting for neutron capture cross sections of astrophysical importance, studies of neutron-rich light elements, and producing new heavy actinide isotopes

Actinide target fabrication

- Ammonium diurante was the first actinide target for nuclear studies
 - Used by Meitner, Hahn, and Frisch to investigate irradiation of uranium with neutrons
- Target fabrication techniques
 - Molecular plating
 - Polymer-assisted deposition
 - Other techniques include sputtering, painting, electrophoresis, electrospray, and intermetallics
- Fabrication requirements
 - Deposition yields near 100%
 - Non-interfering substrates (low Z, typically titanium)
 - Reproducibility for multi-sector targets
 - Durability
 - Remote handling capability for radioactive materials

Thin film target fabrication at ORNL

Actinide film deposition: Cf, Am, Cm, and Bk

- Metal substrates (Pt, stainless steel, Cu, Fe, Au, Gd, and Ti foils)
- Electrochemical deposition methods: isopropanol, isobutanol, and ammonium acetate
- Thin film analysis and characterization using gamma imaging and scanning electron microscopy (SEM)

Ti foil and mounting frame Electrodeposition unit

SEM of lanthanide deposition

Projected target needs for SHE experiments (2015-2020)

Date	Facility	Isotope	Experiment	Comments
2015	JINR	Mixed Cf	Heavy isotopes of Z=118, 296(118) would be the heaviest nucleus to date	Targets produced at ORNL, shipped to JINR in January 2015
2015	JINR	Pu-239/240	Connect SHE island to nuclear mainland	
2015	RIKEN	Cm-248	Decay properties of Z=116, new Z=118 isotopes, search for Z=120	Multi-year campaign
2015	LBNL	Am-243 Np-237	Alpha, gamma, x-ray spectroscopy, mass measurements	
2017	GANIL	Am-243 Np-237	Extremes of nuclear mass and charge, new isotopes	S3 spectrometer
2017	JINR/ Factory	Cm-248 Am-243	Reaction mechanisms for beams heavier than Ca, search for 296(118)	Development and commissioning of high current beams at SHE Factory
2018	ANL	U-238 Pu-242/244 Cm-248	Radioactive beam commissioning of AGFA spectrometer, reaction mechanisms	New gas-filled spectrometer and upgraded accelerator capabilities
2018	LBNL	Cm-248 Pu-244	Alpha, gamma, x-ray spectroscopy, mass measurements	Excited states of SHE island nuclei
2019	GANIL	Cm-248 Pu-244	New neutron-rich isotopes, search for Z=120	High intensity LINAC, S3 spectrometer
2019	RIKEN	Cm-248	Multi-year campaign to search for Z=119	
2019	JINR/ Factory	Bk-249	Spectroscopy of odd-Z nuclei, search for Z=119	Requires Bk production in HIFR (ORNL)
2020	JINR/ Factory	Mixed Cf	Search for heaviest nuclei 297(118) and 298(120)	Requires processing of old Cf sources at REDC (ORNL)

CAK RIDGE NATIONAL LABORATORY

Requested targets will enable a wide-ranging international SHE research program

Facility	2015	2016	2017	2018	2019	2020
JINR and Factory	Heavy isotoper connect island mainland (^{239,240} Pu, mixe	s of 118, to nuclear ed Cf targets)	Reaction mecha beams), search using Ti beams, commissioning (nisms (new for 296(118) Factory ⁽²⁴⁸ Cm/ ²⁴³ Am)	Spectroscopy of odd-Z nuclei, search for 119 (²⁴⁹ Bk)	Search for 120 and 297(118) (mixed Cf)
RIKEN	Decay properti (²⁴⁸ Cm target)	ies of 116, new	Search for 119 (²⁴⁸ Cm target)			
LBNL	Alpha, gamma, x-ray, mass measurements (Z=113-114) (²⁴³ Am/ ²³⁷ Np targets)			Alpha, gamma, x-ray, mass measurements (Z=115-116), excited states (²⁴⁸ Cm, ²⁴⁴ Pu)		
ANL				AGFA commis (²³⁸ U, ^{242,244} Pu	A commissioning, reaction mechanisms J, ^{242,244} Pu, ²⁴⁸ Cm targets)	
GANIL (S3)			New isotopes with extreme nuclear mass and charge (²⁴³ Am/ ²³⁷ Np targets)		New neutron-rich isotopes, search for 120 (²⁴⁴ Pu, ²⁴⁸ Cm targets)	

- Heaviest nuclei ever produced
- New elements: Searches for 119 and 120 (multiple independent approaches)
- Significant advances in SHE reaction mechanisms and spectroscopy

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Discussion

E

11

-

1000

dista -

المعادية معنية المعادية المعا المعادية الم المعادية الم

10 01 01 01 010

Sid

Hime.

SCORESS.