Probing the Stability of Superheavy Nuclei with Radioactive Ion Beams

Sophie Heinz

GSI Darmstadt and Justus-Liebig-University Gießen

International Symposium Super Heavy Nuclei 2015, Texas, March 31 – April 02, 2015

How to Access the N=184 region?

Neutron number

Synthesis of Neutron-rich Isotopes with RIBs?

More neutrons does not mean larger fusion residue cross-sections. example: $^{A}Ge + ^{208}Pb \rightarrow ^{A}114^{*}$

(Theorie: G. Adamian, N. Antonenko, W. Scheid, DNS model)

expected yields for σ = 0.1 pb and 10⁹ proj./s: 1 event in 300 years

The Fusion Process in Heavy Systems

Superheavy systems: $\sigma_{ER} << \sigma_{capture} \rightarrow \sigma_{capture} \approx \sigma_{QF} + \sigma_{FF} = 10 - 100 \text{ mb}$

The Fusion Process in Heavy Systems

Movement of the nuclear system on the potential energy surface

example: 48Ca + 248Cm

V. Zagrebaev and W. Greiner

Study of QF and FF allows the "mapping" of the potential energy surface
expected yields for σ = 100 mb and 10⁶ proj. / s: ~300 / hour
experiments are possible in very near future at HIE-ISOLDE, CERN

The HIE-ISOLDE Project at CERN

HIE-ISOLDE: an energy, intensity and quality upgrade

figure: CERN web page

Timeline:

- ◆ 2015: installation of LINAC stage 1 + beamlines; first beam in October 2015 (up to 5.5 MeV/u)
- ♦ 2016: LINAC stage 2 and 3: beam energies up to 10 MeV/u

Our first experiment at HIE-ISOLDE

The reaction ^Rb + $^{209}\text{Bi} \rightarrow ^{\text{A}}120^{\text{*}}$

• Rb beams are available in a broad range of N and with high intensities

With ⁹⁵Rb the N = 184 shell can be reached

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Study of the Di-nuclear System $^{A}Rb + ^{209}Bi (Z_1 + Z_2 = 120)$

October 1, 2012

S. Heinz^{1,2}, E. Kozulin³, C. Beck⁴, O. Beliuskina¹, T. Dickel², H. Geissel^{1,2}, S. Hofmann¹, M. Itkis³, Y. Itkis³, D. Kamanin³, B. Kindler¹, G. Knyazheva³, T. Loktev³, B. Lommel¹, J. Maurer¹, A. Di Nitto⁵, W. Plass², W. Trazska⁶, E. Vardaci⁵, L. Vayshnene⁸

¹ GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany

² Justus-Liebig-Universität Gießen, 35392 Gießen, Germany

³ Joint Institute of Nuclear Research, 141980 Dubna, Russia

⁴ IPHC Department RS, Strasbourg, France

⁵ Dipartimento di Scienze Fisiche del'Universita di Napoli, 80126 Napoli, Italy

⁶ Department of Physics, University of Jyväskylä, FI 40500, Finland

Spokespersons: Sophie Heinz (<u>s.heinz@gsi.de</u>), Eduard Kozulin (kozulin@jinr.ru)

Decision of the CERN INTC, December 2012:

formation of the capture probability. The two-arm CORSET setup providing mass- and energy information will be employed at 3 different ⁹⁵Rb beam energies. <u>The proposal is very interesting</u> and will initiate a new program at ISOLDE. It was requested that stable Rb beam be used for

Experimental Setup for the Study of ARb + ²⁰⁹Bi

CORSET detection system, Dubna (E. Kozulin et al.)

Experimental program:

Measurement of A -TKE distributions of as a function of projectile neutron number and beam energy

The Heaviest Known Nuclei

^ARb + ²⁰⁹Bi composite systems reachable Rb RIBs of intensity > $5 \cdot 10^6$ / spill

Neutron number

Summary

- The N=184 shell cannot be reached on mid-term time scale in fusionevaporation reactions with RIBs
- But: QF and FF appear with large cross-sections of ~100 mb and allow the probing of the PES → possible with RIB intensities ≥ 10⁶ part. / s
- RIBs with energies up to >5 MeV/u available at HIE-ISOLDE (CERN) starting from late 2015