Probing the Stability of Superheavy Nuclei with Radioactive Ion Beams

Sophie Heinz

GSI Darmstadt
and
Justus-Liebig-University Gießen

International Symposium Super Heavy Nuclei 2015, Texas, March 31 – April 02, 2015
How to Access the N=184 region?

- can be reached with n-rich RIBs, but:
 - small ER cross-sections
 - small RIB intensities
Synthesis of Neutron-rich Isotopes with RIBs?

More neutrons does not mean larger fusion residue cross-sections. Example: 32Ge + 208Pb \rightarrow 114

(Theorie: G. Adamian, N. Antonenko, W. Scheid, DNS model)

Expected yields for $\sigma = 0.1$ pb and 10^9 proj./s: 1 event in 300 years
The Fusion Process in Heavy Systems

10 - 100 mb

Composite System

QUASI-FISSION (QF)

FUSION

Compound Nucleus (CN)

FUSION-FISSION (FF)

Evaporation Residue (ER)

Fission Fragments

\[\sigma_{ER} = \sigma_{\text{capture}} \cdot P_{CN} \cdot P_{\text{survival}} \]

Superheavy systems: \(\sigma_{ER} \ll \sigma_{\text{capture}} \) \(\Rightarrow \) \(\sigma_{\text{capture}} \approx \sigma_{QF} + \sigma_{FF} = 10 - 100 \text{ mb} \)
The Fusion Process in Heavy Systems

Movement of the nuclear system on the potential energy surface

example: 48Ca + 248Cm

- Study of QF and FF allows the „mapping“ of the potential energy surface
- expected yields for $\sigma = 100$ mb and 10^6 proj. / s: ~ 300 / hour
- experiments are possible in very near future at HIE-ISOLDE, CERN
The HIE-ISOLDE Project at CERN

HIE-ISOLDE: an energy, intensity and quality upgrade

Timeline:
♦ 2015: installation of LINAC stage 1 + beamlines; first beam in October 2015 (up to 5.5 MeV/u)
♦ 2016: LINAC stage 2 and 3: beam energies up to 10 MeV/u
Our first experiment at HIE-ISOLDE

The reaction ARb + 209Bi \rightarrow A120*

- Rb beams are available in a broad range of N and with high intensities
- With 95Rb the N = 184 shell can be reached

$E^\ast_{CN} = E_{cm} - Q$
$E_{cm} = B_{fu}$

$E^\ast_{CN} < S_n \approx 10 \text{ MeV} \rightarrow \text{no neutron evaporation}$
$E^\ast_{CN} < B_f \approx 5 \text{ MeV} \rightarrow \text{no CN fission}$
$E^\ast_{CN} < 0 \rightarrow \text{no CN formation}$

figure: CERN web page
Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Study of the Di-nuclear System \(^{ARb} + ^{209}Bi\) (\(Z_1 + Z_2 = 120\))

October 1, 2012

S. Heinz\(^{1,2}\), E. Kozulin\(^3\), C. Beck\(^4\), O. Beliuskina\(^1\), T. Dickel\(^2\), H. Geissel\(^{1,2}\), S. Hofmann\(^1\), M. Itkis\(^3\), Y. Itkis\(^3\), D. Kamanin\(^3\), B. Kindler\(^1\), G. Knyazheva\(^3\), T. Loktev\(^3\), B. Lommel\(^1\), J. Maurer\(^1\), A. Di Nitto\(^5\), W. Plass\(^2\), W. Trazska\(^6\), E. Vardaci\(^5\), L. Vayshnene\(^8\)

1 GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
2 Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
3 Joint Institute of Nuclear Research, 141980 Dubna, Russia
4 IPHC Department RS, Strasbourg, France
5 Dipartimento di Scienze Fisiche dell'Università di Napoli, 80126 Napoli, Italy
6 Department of Physics, University of Jyväskylä, FI 40500, Finland

Spokespersons: Sophie Heinz (s.heinz@gsi.de), Eduard Kozulin (kozulin@jinr.ru)

Decision of the CERN INTC, December 2012:

"... formation of the capture probability. The two-arm CORSET setup providing mass- and energy information will be employed at 3 different \(^{95}Rb\) beam energies. The proposal is very interesting and will initiate a new program at ISOLDE. It was requested that stable Rb beam be used for ..."
Experimental Setup for the Study of $^7\text{Arb} + ^{209}\text{Bi}$

CORSET detection system, Dubna (E. Kozulin et al.)

Experimental program:
Measurement of A - TKE distributions of as a function of projectile neutron number and beam energy
The Heaviest Known Nuclei

\[^{239}_{15} \text{Rb} + ^{209}_{83} \text{Bi} \text{ composite systems reachable Rb RIBs of intensity }> 5 \cdot 10^6 \text{ / spill} \]
Summary

The N=184 shell cannot be reached on mid-term time scale in fusion-evaporation reactions with RIBs.

But: QF and FF appear with large cross-sections of ~100 mb and allow the probing of the PES possible with RIB intensities ≥ 10^6 part./s.

RIBs with energies up to >5 MeV/u available at HIE-ISOLDE (CERN) starting from late 2015.