MIDTERM EXAM-4 - v1

PHYS 201 (Spring 2018), 04/24/18

Name:

Solution Key

Last 4 digits of UIN:

Lab-Sect. no.:

Signature:

In taking this exam you confirm to adhere to the Aggie Honor Code: "An Aggie does not lie, cheat, steal or tolerate those who do."

Duration: 90 minutes

Show all your work for full/partial credit!

Include the correct units in your final answers for full credit!

Unless otherwise stated, quote your results in SI units!

- (a) Sound waves can propagate
 (A) only in a medium (B) only in vacuum (C) in media and in vacuum.
- (b) When the sound intensity increases by a factor of 10, the intensity level increases by (A) a factor of 2 (B) 3 dB (C) 10 dB.
- (c) When the temperature of a blackbody emitter increases from $0^{\circ}C$ to $50^{\circ}C$, its radiated heat increases by a factor of approximately (A) 2 (B) 4 (C) 6.
- (d) When heat is conducted through a metal wire, the heat current (A) doubles (B) triples (C) quadrupels, if you double the cross-sectional area of the wire.
- (e) When adding heat to a substance during a phase change, the substance's temperature (A) decreases (B) stays constant (C) increases.
- (f) When an ideal gas does expansion work without heat being added to it, its temperature (A) decreases (B) stays constant (C) increases.
- (g) When the average speed of the atoms in an ideal gas doubles, its equilibrium temperature (in K) increases by a factor of (A) 2 (B) 4 (C) 8.

No.	Points
1	AS
2	AS
3	AS
4	SE
5	SE
Sum	

2.) Perodic Waves

(24 pts.)

A segual floating on the ocean is moved up and down by periodic waves. The horizontal spacing between adjacent minima is 6 m, and the wave speed is given by $v = \sqrt{g\lambda/(2\pi)}$ (where $g=9.8\,m/s^2$ and λ is the wavelength). The height difference between minima and maxima is $0.5 \, m$. Calculate the waves'

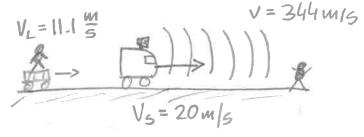
- (a) wavelength and speed;
- (b) frequency;
- (c) amplitude.

(a)
$$\lambda = 6 \text{ m}$$

$$V = \sqrt{\frac{g\lambda}{2\pi}} = 3.06 \text{ m/s}$$

$$(b)$$
 $V=f\lambda \Longrightarrow$

$$f = \frac{V}{\lambda} = 0.51 \text{ Hz}$$


(c)
$$A = \frac{0.5}{2} = 0.25 \text{m}$$

3.) Doppler Effect

(14 pts.)

A freight train is traveling due east at a speed of $45 \, mph$. When approaching a street crossing, the engineer on the train blows the train's horn which has a source frequency of $800 \, Hz$.

- (a) What is the frequency heard by a person standing at the street crossing?
- (b) What is the frequency heard by a railworker on a construction vehicle which is moving behind the train at $25\,mph$ due east?

(a)
$$\int_{L}^{(a)} = \int_{S} \frac{V}{V - V_{S}} = 849 \text{ Hz}$$

(b)
$$f_L = f_S \frac{V + V_L}{V + V_S} = 780 \text{ Hz}$$

4.) Heat and Phase Changes

(16 pts.)

A cook takes an iron skillett (mass $1.05\,kg$ at initial temperature of $220^{\circ}C$) off the stove and cools it by pooring $20\,g$ of water at room temperature ($20^{\circ}C$) onto it. All the water evaporates.

- (a) How much heat has been extracted from the iron skillet?
- (b) What is the final temperature of the iron skillett, in $^{\circ}C$ and in $^{\circ}F$?

(a)
$$Q_{\text{extr}} = Q_{\text{water}} = C_w M_w \Delta T + L_{\text{vop}} M_v$$

= 0.02 (4190.80 + 22.6.10⁵) = 5.19.10⁴ }

=>
$$\Delta T = \frac{-Qextv}{Civan Miran} = -105 G^{\circ}$$

=>
$$T_f = T_i + \Delta T = 115 \text{ °C}$$
 $*\frac{9}{5} + 32 \text{ °F} = 239 \text{ °F}$

- 5.) Ideal-Gus Law and First Law of Thermodynamics (25 pts.) A container of an ideal gas (monatomic) at initial temperature of 320 K and initial volume of $0.3 \, m^3$ expands at constant pressure of $2 \cdot 10^5 \, Pa$ to a final volume of $0.5 \, m^3$.
 - (a) How many moles of gas are in the container?
 - (b) What is the final temperature of the gas?
 - (d) By how much did the internal energy of the gas change?
 - (d) How much work has been done by the gas?
 - (e) How much heat was added (+) or subtracted (-) in the expansion process?

(a)
$$P_iV_i = nRT_i \Rightarrow \sqrt{n} = \frac{P_iV_i}{RT_i} = \frac{2.105.0.3}{8.31.320} = 22.6 \text{ mol}$$

$$\left(\text{or } T_f = T_i \frac{V_f}{V_i}\right)$$

(e)
$$\Delta V = Q - W$$

=> $Q = \Delta V + W = 1.0 \cdot 10^{5}$