
Name: PHY625 (Spring 2011), 02/14/11

Homework Assignment #3

(Due Date: Wed, Feb. 23, 9:10am, in class)

3.1 Saturation in the Fermi Gas Model of the Nucleus (2+1+3+2+2 pts.)
In the Fermi Gas Model (FGM) the nucleus is approximated by A non-interacting nucleons
in a volume V (you can assume it to be spherical, V = 4πR3

A/3). The one- and two-
particle density matrices in the nuclear ground state, |0〉, are given by
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The goal is to evaluate the ground-state expectation value (GSEV) of the A-body nuclear
Hamiltonian,

〈0|Ĥ|0〉 = 〈0|T̂ |0〉 + 〈0|V̂12|0〉 (4)

and find its minimum.

(a) Use the Taylor expansion of sin x and cos x to show that g−(x → 0) = 0 (“Pauli
repulsion”) and g+(x → 0) = 2 (“Pauli attraction”).

(b) Use plotting software to graph ρ
(2)
00 (r) for r = [0, 5] fm using kF = 265MeV.

(c) Calculate the GSEV of the kinetic energy of the nucleus by evaluating 〈0|T̂ |0〉 =

A tr
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)

in momentum space; express the result as a function of RA and A (elim-

inate the V dependence). Start by calculating the Fourier transform of ρ
(1)
00 (~r, ~r ′).

(d) Calculate the GSEV of the potential energy in coordinate space,

〈0|V̂12|0〉 =
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assuming a pairwise 2-body potential V12(r) = −V0 Θ(b − r). You may ignore 25%
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for RA > b/2.

(e) Plot the results for kinetic and potential energy, as well as their sum, as a function
of RA for A = 50 and A = 200. From both graphs estimate the minimum and
corresponding saturation density.


