Homework Assignment #5

(Due Date: Wednesday, Oct. 22, 01:50 pm, in class)

5.1 Nuclear Shell Model

 $(1+1+2 \ pts.)$

Start from a spherical harmonic oscillator potential for the collective nuclear mean field,

$$U_{HO}(r) = -U_0 + \frac{1}{2} M_N \,\omega^2 \,r^2 \,, \qquad (1)$$

inside a nucleus of radius $R_A = 1.2A^{1/3}$, with $U_0 = -50$ MeV and $U(R_A) = 0$.

- (a) How large is the oscillator quantum $\hbar\omega$ for a In-115 nucleus?
- (b) Given the energy levels of this potential, $E_N = (N + \frac{3}{2})\hbar\omega U_0$ with N = 2(n-1) + land $n \ge 1$, $l \ge 0$, determine the proton shell fillings and pertinent totals.
- (c) Now include a spin-orbit coupling of type

$$U(r) = U_{HO}(r) - \frac{2}{\hbar^2} \alpha \vec{L} \cdot \vec{S}$$
⁽²⁾

where \vec{S} is the nucleon's spin- $\frac{1}{2}$ operator and α carries the dimension of energy. Determine the eigenvalues of $\vec{L} \cdot \vec{S}$ in terms of j, l and s for $j = l \pm \frac{1}{2}$ (and $s = \frac{1}{2}$), and explain how this generates the nuclear magic numbers 2, 8, 20, 28, 50 and 82. What is the approximate magnitude of α for this to work out?

5.2 σ - ω Model Lagrangian

(6 pts.)

The σ - ω (or Walecka) model Lagrangian (using the notation from class) is given by

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m_{\sigma}^2 \phi^2 - \frac{1}{4} (V_{\mu\nu})^2 + \frac{1}{2} m_{\omega}^2 V_{\mu}^2 + \bar{\psi} \left[i \partial \!\!\!/ - M_N - g_{\omega} V + g_{\sigma} \phi \right] \psi .$$
(3)

(a) First consider the free Dirac equation for the nucleon in momentum space,

$$(\not p - M_N)\psi = 0. (4)$$

Show that the ansatz $u_s = N[I_2, \vec{\sigma} \cdot \vec{p}/(E_p + M_N)]\chi_s$ for the 4-spinor ψ is a solution, where $s=1,2, \ \chi_1=(1,0), \ \chi_2=(0,1), \ E_p = (\vec{p}^2 + M_N^2)^{1/2}, \ I_2$: 2×2 identity matrix, $\vec{\sigma}$: Pauli matrices.

(b) Using the momentum-space expansion of the solutions for free Dirac field operators, ψ and ψ^+ as defined in class, together with the pertinent anti-commutation and orthogonality relations, show that "bare" vacuum energy of Dirac theory is given by

$$H \equiv \int d^3x \mathcal{H} = \sum_{s=1,2} \int d^3p \ E_p \ [b_s^+(p) \ b_s(p) - d_s(p) \ d_s^+(p)] \ . \tag{5}$$

Why is this problematic and how did Dirac solve this problem?

(c) Derive the equations of motion for the σ , ω and nucleon fields in the Walecka model using the Euler-Lagrange equations.

Name: