Homework Assignment \#5

(Due Date: Wednesday, Oct. 22, 01:50 pm, in class)
5.1 Nuclear Shell Model
($1+1+2$ pts.)
Start from a spherical harmonic oscillator potential for the collective nuclear mean field,

$$
\begin{equation*}
U_{H O}(r)=-U_{0}+\frac{1}{2} M_{N} \omega^{2} r^{2} \tag{1}
\end{equation*}
$$

inside a nucleus of radius $R_{A}=1.2 A^{1 / 3}$, with $U_{0}=-50 \mathrm{MeV}$ and $U\left(R_{A}\right)=0$.
(a) How large is the oscillator quantum $\hbar \omega$ for a In-115 nucleus?
(b) Given the energy levels of this potential, $E_{N}=\left(N+\frac{3}{2}\right) \hbar \omega-U_{0}$ with $N=2(n-1)+l$ and $n \geq 1, l \geq 0$, determine the proton shell fillings and pertinent totals.
(c) Now include a spin-orbit coupling of type

$$
\begin{equation*}
U(r)=U_{H O}(r)-\frac{2}{\hbar^{2}} \alpha \vec{L} \cdot \vec{S} \tag{2}
\end{equation*}
$$

where \vec{S} is the nucleon's spin- $\frac{1}{2}$ operator and α carries the dimension of energy. Determine the eigenvalues of $\vec{L} \cdot \vec{S}$ in terms of j, l and s for $j=l \pm \frac{1}{2}$ (and $s=\frac{1}{2}$), and explain how this generates the nuclear magic numbers $2,8,20,28,50$ and 82 . What is the approximate magnitude of α for this to work out?
$5.2 \sigma-\omega$ Model Lagrangian
The $\sigma-\omega$ (or Walecka) model Lagrangian (using the notation from class) is given by

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} m_{\sigma}^{2} \phi^{2}-\frac{1}{4}\left(V_{\mu \nu}\right)^{2}+\frac{1}{2} m_{\omega}^{2} V_{\mu}^{2}+\bar{\psi}\left[i \not \partial-M_{N}-g_{\omega} V+g_{\sigma} \phi\right] \psi . \tag{3}
\end{equation*}
$$

(a) First consider the free Dirac equation for the nucleon in momentum space,

$$
\begin{equation*}
\left(\not p-M_{N}\right) \psi=0 . \tag{4}
\end{equation*}
$$

Show that the ansatz $u_{s}=N\left[I_{2}, \vec{\sigma} \cdot \vec{p} /\left(E_{p}+M_{N}\right)\right] \chi_{s}$ for the 4 -spinor ψ is a solution, where $s=1,2, \chi_{1}=(1,0), \chi_{2}=(0,1), E_{p}=\left(\vec{p}^{2}+M_{N}^{2}\right)^{1 / 2}, I_{2}: 2 \times 2$ identity matrix, $\vec{\sigma}$: Pauli matrices.
(b) Using the momentum-space expansion of the solutions for free Dirac field operators, ψ and ψ^{+}as defined in class, together with the pertinent anti-commutation and orthogonality relations, show that "bare" vacuum energy of Dirac theory is given by

$$
\begin{equation*}
H \equiv \int d^{3} x \mathcal{H}=\sum_{s=1,2} \int d^{3} p E_{p}\left[b_{s}^{+}(p) b_{s}(p)-d_{s}(p) d_{s}^{+}(p)\right] . \tag{5}
\end{equation*}
$$

Why is this problematic and how did Dirac solve this problem?
(c) Derive the equations of motion for the σ, ω and nucleon fields in the Walecka model using the Euler-Lagrange equations.

