Homework Assignment \#4

(Due Date: Wednesday, Oct. 08, 01:50 pm, in class)
4.1 Free and In-Medium Nucleon-Nucleon Scattering: T- and G-Matrix (2+3+3+1+2 pts.) The Lippmann-Schwinger equation (LSE) for the free $N N$ scattering T-matrix reads

$$
\begin{equation*}
T\left(E ; \vec{k}^{\prime}, \vec{k}\right)=V\left(\vec{k}^{\prime}, \vec{k}\right)+\int \frac{d^{3} p}{(2 \pi)^{3}} V\left(\vec{k}^{\prime}, \vec{p}\right) \frac{1}{E-p^{2} / M_{N}+i \eta} T(E ; \vec{p}, \vec{k}) \tag{1}
\end{equation*}
$$

where $\pm \vec{k}\left(\pm \vec{k}^{\prime}\right)$ denotes the relative momentum of the incoming (outgoing) nucleons in the center of mass, E is the total "on-shell" energy, $E=k^{2} / M_{N}=k^{\prime 2} / M_{N}, M_{N}=940 \mathrm{MeV}$ the nucleon mass and η infinitesimal (neglect spin-isospin except for nuclear densities).
(a) Using a partial-wave expansion for potential V and T-matrix,

$$
\begin{equation*}
X\left(\vec{k}^{\prime}, \vec{k}\right)=4 \pi \sum_{l=0}^{\infty}(2 l+1) P_{l}\left(u_{k^{\prime} k}\right) X_{l}\left(k^{\prime}, k\right), \tag{2}
\end{equation*}
$$

as well as azimuthal symmetry, show that the LSE can be reduced to

$$
\begin{equation*}
T_{l}\left(E ; k^{\prime}, k\right)=V_{l}\left(k^{\prime}, k\right)+\frac{2}{\pi} \int p^{2} d p V_{l}\left(k^{\prime}, p\right) \frac{1}{E-p^{2} / M_{N}+i \eta} T_{l}(E ; p, k) \tag{3}
\end{equation*}
$$

in each partial wave l. In eq. (2), $u_{k^{\prime} k}=\cos \left(\alpha_{k^{\prime} k}\right)$ with $\alpha_{k^{\prime} k}=\angle\left(\overrightarrow{k^{\prime}}, \vec{k}\right)$; utilize the orthogonality of the Legendre polynomials,

$$
\begin{equation*}
\int d u_{p k} P_{l^{\prime}}\left(u_{k^{\prime} p}\right) P_{l}\left(u_{p k}\right)=\frac{2 \delta_{l l^{\prime}}}{2 l+1} P_{l}\left(u_{k^{\prime} k}\right) . \tag{4}
\end{equation*}
$$

(b) Concentrate on the S-wave channel $(l=0)$ and approximate the $N-N$ interaction by an average attractive σ-meson exchange potential,

$$
\begin{equation*}
V_{0}^{\sigma}\left(k^{\prime}, k\right)=-\frac{g_{\sigma}^{2}}{4 \pi} \frac{F_{\sigma}(k) F_{\sigma}\left(k^{\prime}\right)}{m_{\sigma}^{2}} \tag{5}
\end{equation*}
$$

where a hadronic formfactor, $F_{\sigma}(k)=\Lambda_{\sigma}^{2} /\left(\Lambda_{\sigma}^{2}+k^{2}\right)$, simulates the finite size of the hadronic vertex and ensures convergence of the 1-D LSE. Write down explicitly the first 3 terms of the Born series for the T-matrix and exploit the separability of the potential, $V\left(k^{\prime}, k\right) \equiv v\left(k^{\prime}\right) v(k)$, to resum the geometric series yielding

$$
\begin{equation*}
T_{0}\left(E ; k^{\prime}, k\right)=\frac{V_{0}\left(k^{\prime}, k\right)}{1-\Pi(E)} \quad, \quad \Pi(E)=\frac{2}{\pi} \int p^{2} d p \frac{V_{0}(p)}{E-p^{2} / M_{N}+i \eta} . \tag{6}
\end{equation*}
$$

(c) The differential cross section is given in terms of the T-matrix as

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}(k, \Theta)=\frac{k^{2}}{v_{\mathrm{rel}}^{2}} \frac{|T(k, \Theta)|^{2}}{4 \pi^{2}} \tag{7}
\end{equation*}
$$

$(\Theta$: scattering angle). Show that for S-wave scattering the total cross section reads

$$
\begin{equation*}
\sigma_{\mathrm{tot}}^{l=0}(E)=4 \pi M_{N}^{2}\left|T_{0}(E)\right|^{2} \tag{8}
\end{equation*}
$$

Evaluate the "loop" function, $\Pi(E)$, utilizing the following decomposition into real and imaginary parts:

$$
\begin{equation*}
\int d p \frac{f(p)}{p_{0}^{2}-p^{2}+i \eta}=P P \int_{0}^{\infty} d p \frac{f(p)}{p_{0}^{2}-p^{2}}+\int d p f(p)(-i \pi) \delta\left(p_{0}^{2}-p^{2}\right) \tag{9}
\end{equation*}
$$

(here: $\left.p_{0}^{2}=M_{N} E\right)$. The principle-value $(P P)$ integral for the real part of $\Pi(E)$ requires a numerical integration. To avoid numerical instabilities when integrating over the pole, use the following "regularization" trick

$$
\begin{equation*}
P P \int_{0}^{\infty} d p \frac{f(p)}{p_{0}^{2}-p^{2}}=P P \int_{0}^{\infty} d p \frac{f(p)-f\left(p_{0}\right)}{p_{0}^{2}-p^{2}}, \quad \text { since } \quad P P \int_{0}^{\infty} \frac{d p}{p_{0}^{2}-p^{2}}=0 \tag{10}
\end{equation*}
$$

Compute and plot the cross section in $[\mathrm{mb}]=\left[0.1 \mathrm{fm}^{2}\right]$ from threshold to $E=150 \mathrm{MeV}$ using $m_{\sigma}=550 \mathrm{MeV}$. Adjust g_{σ} and Λ_{σ} to obtain a cross section of ca. $160-180 \mathrm{mb}$ at $E \simeq 10 \mathrm{MeV}$ and ca. 20 mb for $E \simeq 120 \mathrm{MeV}$ (hint: look for $g_{\sigma} \simeq 2-3$ and $\Lambda_{\sigma} \simeq 1000-$ $1500 \mathrm{MeV})$. Receive an extra 0.5 pts. if you include the experimental $p p$ cross section data in your plot.
(d) Slowly increase the coupling g_{σ} and monitor the real part of the T-matrix close to threshold. Comment on and interpret any qualitative change you observe.
(e) Compute the in-medium $N-N G$-matrix (for total pair momentum $P=0$) using g_{σ} from part (c), by implementing a Pauli-Blocking factor, $\left[1-f\left(\epsilon_{p} ; \mu_{N}, T\right)\right]^{2}$, into the integral of the LSE (3), where

$$
\begin{equation*}
f\left(\epsilon_{p} ; \mu_{N}, T\right)=\frac{1}{\exp \left[\left(\epsilon_{p}-\mu_{N}\right) / T\right]+1} \tag{11}
\end{equation*}
$$

with $\epsilon_{p}=p^{2} / 2 M_{N}$ and chemical potential $\mu_{N}=k_{F}^{2} / 2 M_{N}$ (k_{F} : Fermi momentum). Plot the G-matrix and S-wave cross section vs. E for $k_{F}=265 \mathrm{MeV}$ and temperatures $T=0.5 \mathrm{MeV}$ and $T=5 \mathrm{MeV}$. Interpret your results.

