
Name: PHY625 (Fall 2014), 09/26/14

Homework Assignment #4

(Due Date: Wednesday, Oct. 08, 01:50 pm, in class)

4.1 Free and In-Medium Nucleon-Nucleon Scattering: T - and G-Matrix (2+3+3+1+2 pts.)
The Lippmann-Schwinger equation (LSE) for the free NN scattering T -matrix reads

T (E;~k′, ~k) = V (~k′, ~k) +
∫ d3p

(2π)3
V (~k′, ~p)

1

E − p2/MN + iη
T (E; ~p,~k) , (1)

where ±~k (±~k′) denotes the relative momentum of the incoming (outgoing) nucleons in
the center of mass, E is the total “on-shell” energy, E = k2/MN = k′2/MN , MN=940 MeV
the nucleon mass and η infinitesimal (neglect spin-isospin except for nuclear densities).

(a) Using a partial-wave expansion for potential V and T -matrix,

X(~k′, ~k) = 4π
∞∑
l=0

(2l + 1) Pl(uk′k) Xl(k
′, k) , (2)

as well as azimuthal symmetry, show that the LSE can be reduced to

Tl(E; k′, k) = Vl(k
′, k) +

2

π

∫
p2dp Vl(k

′, p)
1

E − p2/MN + iη
Tl(E; p, k) , (3)

in each partial wave l. In eq. (2), uk′k = cos(αk′k) with αk′k = 6 (~k′, ~k); utilize the
orthogonality of the Legendre polynomials,∫

dupk Pl′(uk′p) Pl(upk) =
2δll′

2l + 1
Pl(uk′k) . (4)

(b) Concentrate on the S-wave channel (l=0) and approximate the N -N interaction by
an average attractive σ-meson exchange potential,

V σ
0 (k′, k) = − g

2
σ

4π

Fσ(k)Fσ(k′)

m2
σ

, (5)

where a hadronic formfactor, Fσ(k) = Λ2
σ/(Λ

2
σ + k2), simulates the finite size of the

hadronic vertex and ensures convergence of the 1-D LSE. Write down explicitly the
first 3 terms of the Born series for the T -matrix and exploit the separability of the
potential, V (k′, k) ≡ v(k′) v(k), to resum the geometric series yielding

T0(E; k′, k) =
V0(k

′, k)

1− Π(E)
, Π(E) =

2

π

∫
p2dp

V0(p)

E − p2/MN + iη
. (6)

(c) The differential cross section is given in terms of the T -matrix as

dσ

dΩ
(k,Θ) =

k2

v2
rel

|T (k,Θ)|2

4π2
. (7)



(Θ: scattering angle). Show that for S-wave scattering the total cross section reads

σl=0
tot (E) = 4πM2

N |T0(E)|2 . (8)

Evaluate the “loop” function, Π(E), utilizing the following decomposition into real
and imaginary parts:

∫
dp

f(p)

p2
0 − p2 + iη

= PP

∞∫
0

dp
f(p)

p2
0 − p2

+
∫
dp f(p) (−iπ)δ(p2

0 − p2) (9)

(here: p2
0 = MNE). The principle-value (PP ) integral for the real part of Π(E)

requires a numerical integration. To avoid numerical instabilities when integrating
over the pole, use the following “regularization” trick

PP

∞∫
0

dp
f(p)

p2
0 − p2

= PP

∞∫
0

dp
f(p)− f(p0)

p2
0 − p2

, since PP

∞∫
0

dp

p2
0 − p2

= 0 . (10)

Compute and plot the cross section in [mb]=[0.1 fm2] from threshold to E=150 MeV
using mσ=550 MeV. Adjust gσ and Λσ to obtain a cross section of ca. 160-180 mb
at E' 10 MeV and ca. 20 mb for E'120 MeV (hint: look for gσ' 2-3 and Λσ'1000-
1500MeV). Receive an extra 0.5 pts. if you include the experimental pp cross section
data in your plot.

(d) Slowly increase the coupling gσ and monitor the real part of the T -matrix close to
threshold. Comment on and interpret any qualitative change you observe.

(e) Compute the in-medium N -N G-matrix (for total pair momentum P=0) using gσ
from part (c), by implementing a Pauli-Blocking factor, [1− f(εp;µN , T )]2, into the
integral of the LSE (3), where

f(εp;µN , T ) =
1

exp[(εp − µN)/T ] + 1
(11)

with εp = p2/2MN and chemical potential µN = k2
F/2MN (kF : Fermi momentum).

Plot the G-matrix and S-wave cross section vs. E for kF=265 MeV and temperatures
T=0.5 MeV and T=5 MeV. Interpret your results.


