Homework Assignment \#2

(Due Date: Wednesday, September 17, 01:50 pm, in class)

2.1 Electron Scattering off Nuclei

In Born approximation, the differential cross section for an ultrarelativistic electron of energy $E \gg m_{e}\left(m_{e}=0.511 \mathrm{MeV}\right)$ elastically scattering off an electrostatic potential $A_{0}(r)$ is given by (neglecting any intrinsic spin dependencies)

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{E^{2}}{4 \pi^{2}}\left[e \int d^{3} r A_{0}(r) \mathrm{e}^{i \vec{q} \cdot \vec{r}}\right]^{2}, \tag{1}
\end{equation*}
$$

where $\vec{q} \equiv \vec{p}_{f}-\vec{p}_{i}$: momentum transfer from the electron, and e : electron charge.
(use units of MeV or fm , as appropriate, with $\hbar c=197.33 \mathrm{MeVfm}$)
(a) Show that the relation between the magnitude of the momentum transfer, $q=|\vec{q}|$, and the scattering angle, θ, is given by $q=2 E \sin (\theta / 2)$.
(b) Using Possion's equation, $\vec{\nabla}^{2} A_{0}=-Z e \hat{\rho}_{\text {ch }}(r)$, as well as $\vec{\nabla}^{2} \mathrm{e}^{i \vec{q} \cdot \vec{r}}=-\vec{q}^{2} \mathrm{e}^{i \vec{q} \cdot \vec{r}}$ and partial integration, to show that the cross section takes the form

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\left(\frac{d \sigma_{R}}{d \Omega}\right)\left|F\left(q^{2}\right)\right|^{2} \tag{2}
\end{equation*}
$$

where $\left(d \sigma_{R} / d \Omega\right)=Z^{2} \alpha^{2} /\left(4 E^{2} \sin ^{4}(\theta / 2)\right)$ is the Rutherford cross section for a point charge $Z, \alpha=e^{2} / 4 \pi$, and the formfactor of the charge distribution defined as

$$
\begin{equation*}
F(q)=\int d^{3} r \hat{\rho}_{\mathrm{ch}}(r) \mathrm{e}^{i \vec{q} \cdot \vec{r}} \tag{3}
\end{equation*}
$$

(c) Sketch the angular dependence of the cross section for a uniform charge distribution, $\hat{\rho}_{\mathrm{ch}}(r)=C \theta\left(R_{0}-r\right)$, with radius $R_{0}=5 \mathrm{fm}(C$: constant) and electron energies $E=E_{i}=E_{f}=150 \mathrm{MeV}$. Compare it to the result for a point charge, $\rho_{c h}(r)=Z e \delta^{(3)}(\vec{r})$. Start by determining the constant C to normalize $\hat{\rho}_{\mathrm{ch}}(r)$ to one.

2.2 Liquid Drop Model (LDM) of Nuclei

The empirical Weizsäcker formula for the binding energy of nuclei is given by

$$
\begin{equation*}
E_{B}=\sum_{i=1}^{5} E_{i}=a_{1} A+a_{2} A^{2 / 3}+a_{3} \frac{Z^{2}}{A^{1 / 3}}+a_{4} \frac{(A-2 Z)^{2}}{A}+a_{5} \frac{\lambda}{A^{3 / 4}} \tag{4}
\end{equation*}
$$

with A : nuclear mass number, Z : nuclear charge in units of $e, a_{1}=-15.75 \mathrm{MeV}, a_{2}=17.8 \mathrm{MeV}$, $a_{3}=0.71 \mathrm{MeV}, a_{4}=23.7 \mathrm{MeV}$ and $a_{5}=34 \mathrm{MeV}$ with $\lambda=-1,0,1$ for e-e,e-o,o-o nuclei.
(a) Briefly discuss the physical motivation (A and Z dependence) for each term.
(b) Derive the value Z^{*} for the charge which minimizes the binding energy for fixed A. Plot the resulting "valley of stability", $Z^{*}(N)$.
(c) Plot $\left|E_{B}(A)\right| / A$ using $Z^{*}(A)$ from part (b) by subsequently adding the terms of the LDM in numerical order up to (including) $i=4$. In each step estimate the value for A (if any) for which $\left|E_{B}(A)\right| / A$ is maximal.
(d) How much fission energy is released in ${ }_{92}^{235} U \rightarrow{ }_{56}^{144} B a+{ }_{36}^{89} \mathrm{Kr}+2 n$? How many kg of ${ }^{235} U$ are spent in 1 year at an output of 1000 MW (neglect any losses; $1 \mathrm{eV}=1.6 \cdot 10^{-19} \mathrm{~J}$)?

