Homework Assignment #8

(Due Date: Monday, Dec. 02, 01:50 pm, in class)

8.1 Heavy-Quark Potential and Quarkonium Spectrum (2+1+2+2 pts.)The static QCD potential between a heavy quark and antiquark is well represented by

$$V_{Q\bar{Q}}(r) = -\frac{4}{3}\frac{\alpha_s}{r} + \sigma r \tag{1}$$

with a string tension of $\sigma = 1 \text{ GeV/fm}$. The ground and first excited state of the Upsilon $(b\bar{b})$ spectrum have masses of $M(\Upsilon(1S))=9.46 \text{ GeV}$ and $M(\Upsilon(2S))=10.02 \text{ GeV}$.

- (a) Assuming $\alpha_s=0.5$ and neglecting the linear confining term in the potential, use the hydrogen expression for the bound-state energy to estimate the bottomonium binding energies. Can you find a reasonable value for the bottom-quark mass, m_b , to establish approximate agreement with the above masses?
- (b) Estimate the correction to the 2 binding energies due to the confining term assuming hydrogen-like radii of the 2 Υ states. Is each correction "large" or "small"?
- (c) Generalize the expression for the electromagnetic hyperfine splitting,

$$\Delta E_{hf} = -\frac{2}{3} \,\vec{\mu}_1 \cdot \vec{\mu}_2 \,|\psi(0)|^2 \tag{2}$$

 $(\vec{\mu}_i = e_i \vec{\sigma}_i / 2m_i, |\psi(0)|^2$: onium wave function overlap at the origin; for the 1S ground state $\psi(r) = (\pi a_0^3)^{-1/2} e^{-r/a_0}$, to color charges by replacing $\alpha_{em} \rightarrow \frac{4}{3} \alpha_s$. Prove $\vec{\sigma}_1 \cdot \vec{\sigma}_2 = 2\vec{S}^2 - 3$; use this to predict the hyperfine splitting between the ground-state bottomonia $\Upsilon(1S)$ (spin S=1) and η_b (spin S=0). Redo this for the ground-state charmonia J/ψ (S=1) and η_c (S=0), using $m_c=1.8$ GeV and a size of 0.4 fm, and compare ΔE_{hf} to the measured $J/\psi \cdot \eta_c$ mass splitting, $M_{J/\psi} - M_{\eta_c} = (3097 - 2980)$ MeV \simeq 120 MeV.

(d) Use the semiclassical approximation to obtain the Coulombic binding energy, radius and heavy-quark velocity of topomonium (top quark mass $m_t=173$ GeV). How many revolutions does the system complete before a top quark decays ($\Gamma_t \simeq 3$ GeV)?

8.2 Constituent-Quark Mass and Quark Condensate (3 pts.) In the Nambu Jona-Lasinio model, the gap equation for the constituent light-quark mass is

$$m_q^* = m_q + 4N_c N_f G \int \frac{d^3 p}{(2\pi)^3} \frac{m_q^*}{(\vec{p}^2 + (m_q^*)^2)^{1/2}} F(p)^2$$
(3)

where $m_q \simeq 5 \,\text{MeV}$ is the bare quark mass, G the 4-point $q-\bar{q}$ coupling constant and $F(p) = \Lambda^2/(\Lambda^2 + \vec{p}^2)$ an effective formfactor. Set $\Lambda=0.6 \,\text{GeV}$. Compute numerically the value of the coupling constant, G, for which the constituent quark mass acquires a value of 350 MeV. How large (in [fm⁻³]) is the quark-antiquark condensate in this case?

Name: