Homework Assignment \#7

(Due Date: Monday, Nov. 18, 01:50 pm, in class)

7.1 Electron Scattering and Nucleon Structure

$(2+1+2+2+2+1$ pts. $)$
In Dirac theory the cross section for the elastic scattering of an electron (with initial and final 4-momenta (E, \vec{k}) and ($\left.E^{\prime}, \vec{k}^{\prime}\right)$, respectively) off a spin- $\frac{1}{2}$ point particle of mass M is given by

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4}(\theta / 2)} \frac{E^{\prime}}{E}\left(\cos ^{2} \frac{\theta}{2}-\frac{q^{2}}{2 M^{2}} \sin ^{2} \frac{\theta}{2}\right) \tag{1}
\end{equation*}
$$

where $\theta=\angle\left(\vec{k}, \vec{k}^{\prime}\right)$ is the scattering angle and $q=(\nu, \vec{q})$ the 4-momentum transfer (the finite electron mass has been neglected, $\left.m_{e} \rightarrow 0\right)$.
(a) Show that, for fixed incident lab energy E, the scattering angle is the only independent variable, by expressing E^{\prime} and q^{2} in terms of θ.
(b) In elastic $e^{-} p$ scattering, the proton structure is characterized by electric and magnetic formfactors, $G_{E, M}$. Write down the accordingly modified cross section, known as "Rosenbluth cross section", and sketch the empirical behavior of $G_{E, M}\left(q^{2}\right)$.
(c) Take the limit of a non-relativistic target, i.e., $M_{p}^{2} \gg\left|q^{2}\right|$, to show that $\nu \rightarrow 0$ and that the Rosenbluth cross section becomes

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4}(\theta / 2)} \cos ^{2}(\theta / 2) G_{E}^{2}\left(\vec{q}^{2}\right) \tag{2}
\end{equation*}
$$

What is the difference to the 1911 Rutherford cross section and where does this difference come from?
(d) Recalling that $G_{E}(\vec{q})=\int d^{3} r \mathrm{e}^{i \vec{q} \cdot \vec{r}} \rho_{\mathrm{ch}}(\vec{r})$ where $\rho_{\mathrm{ch}}(\vec{r})$ is the target's charge density, show that for small \vec{q} and spherically symmetric $\rho_{\text {ch }}$ one has $G_{E}(\vec{q}) \simeq 1-\frac{1}{6} \vec{q}^{2}\left\langle R_{p}^{2}\right\rangle$ and thus

$$
\begin{equation*}
\left\langle R_{p}^{2}\right\rangle=-6 \frac{d G_{E}}{d \vec{q}^{2}}\left(\vec{q}^{2} \rightarrow 0\right) \tag{3}
\end{equation*}
$$

(e) Empirically, one finds $G_{E}\left(q^{2}\right)=\Lambda^{4} /\left(\Lambda^{2}-q^{2}\right)^{2}$ with $\Lambda=0.84 \mathrm{GeV}$. Use this to calculate the proton's charge radius (in [fm]).
(f) Give a physical interpretation of the empirical form of the electric formfactor.

