Homework Assignment \#6

(Due Date: Wednesday, Nov. 06, 01:50 pm, in class)

6.1 Translation Group

Consider the properties of a wave function, $\psi(\vec{r})$, in 3 -dimensional space under simple translations, $\mathcal{T} \vec{r}=\vec{r}+\vec{a}$.
(a) Explain why the set of all translations form a Lie group. What are its basis elements?
(b) If translations are a Symmetry Group (i.e., leave physical laws invariant), show that its representations, U, defined by $U(\mathcal{T})|\psi\rangle=\left|\psi^{\prime}\right\rangle$, commute with the Hamiltonian.
(c) Construct the explicit form of U in coordinate space for an infinitesimal translation and generalize it to finite translations. Which conservation law emerges?
6.2 Isospin Invariance of $\pi-N$ Interactions

A simple $\pi-N-N$ interaction Lagrangian may be written as

$$
\begin{equation*}
\mathcal{L}_{\pi N N}=g_{\pi N N} \bar{\psi}_{N} i \gamma_{5} \vec{\pi} \cdot \vec{\tau} \psi_{N} \tag{1}
\end{equation*}
$$

where the arrows indicate vectors in isospin space (ψ_{N} : isospin doublet; $\vec{\tau}$: Pauli matrices).
(a) Show that the above Lagrangian is invariant under infinitesimal rotations of the fields in isospin space, $\psi_{N} \rightarrow(1-i \vec{\varepsilon} \cdot \vec{\tau} / 2) \psi_{N}$ and $\vec{\pi} \rightarrow(1+\vec{\varepsilon} \times) \vec{\pi}$.
(b) Using the decomposition of the physical pion fields in terms of their cartesian coordinates, $\pi^{0}=\pi_{3}, \pi^{ \pm}=\frac{1}{\sqrt{2}}\left(\pi_{1} \pm i \pi_{2}\right)$, show that the above Lagrangian predicts relations between the physical coupling constants according to

$$
\begin{equation*}
g_{p p \pi^{0}}=-g_{n n \pi^{0}}=\frac{1}{\sqrt{2}} g_{p n \pi^{+}}=\frac{1}{\sqrt{2}} g_{p n \pi^{-}} . \tag{2}
\end{equation*}
$$

6.3 Baryons and Magnetic Moments in the Constituent-Quark Model their quark flavor-spin parts (notation: $u^{\uparrow}\left(s^{\downarrow}\right)$ denotes an $u p$ (strange) quark with spin up (down), etc.; identify the position of writing a quark in the baryon wave function with the particle label, e.g., $\left.\left|u^{\uparrow} d^{\uparrow} s^{\downarrow}\right\rangle\right)$.
(a) The baryon decouplet is realized by fully symmetric flavor and spin wave functions. Start from the wave function of the $\Delta^{-}\left(S_{z}=+\frac{3}{2}\right)=\left|d^{\uparrow} d^{\uparrow} d^{\uparrow}\right\rangle$, to construct the normalized wave functions of the remaining 3Δ states, of the $\Sigma^{*,+}\left(S_{z}=+\frac{3}{2}\right), \Xi^{*, 0}\left(S_{z}=+\frac{3}{2}\right)$ and $\Omega^{-}\left(S_{z}=+\frac{3}{2}\right)$, by using the flavor-step operators $\lambda_{ \pm}^{I}$ and $\lambda_{ \pm}^{U}$ for I - and U-spin (e.g., $\lambda_{-}^{I}|u d u\rangle=|d d u\rangle+0+|u d d\rangle$). Estimate the masses of these baryons using quark masses of $m_{u, d}=0.4 \mathrm{GeV}$ and $m_{s}=0.55 \mathrm{GeV}$, and compare to experiment.
(d) In the CQM the magnetic moment operator for a hadron h is defined by

$$
\begin{equation*}
\mu_{h}=\sum_{i} \mu_{i} \sigma_{z}^{i} \quad, \quad \mu_{i}=\frac{e_{i}}{2 m_{i}} \tag{3}
\end{equation*}
$$

where the sum is over all constituent quarks (charge e_{i} and mass m_{i}) in the hadron. Calculate the magnetic moment of the $\Delta^{0}, \Delta^{++}, \Sigma^{*,+}$ and $\Omega^{-}=\left|s^{\uparrow} s^{\uparrow} s^{\uparrow}\right\rangle$ in units of $\left[\mathrm{GeV}^{-1}\right]$ (the quark charges are $e_{u}=\frac{2}{3}, e_{d, s}=-\frac{1}{3}$).

