Homework Assignment #4

(Due Date: Wednesday, Oct. 16, 01:50 pm, in class)

4.1 Nuclear Shell Model

 $(1+2+2 \ pts.)$

 $(2+3 \ pts.)$

Starting point is the spherical harmonic oscillator potential,

$$U_{HO}(r) = -U_0 + \frac{1}{2} M_N \,\omega^2 \,r^2 \,, \qquad (1)$$

for the collective nuclear mean field inside a nucleus of radius $R_A \simeq 1.2 A^{1/3}$, with $U_0 \simeq -50 \text{ MeV}$ and $U(R_A) \simeq 0$.

- (a) How large is the oscillator quantum $\hbar\omega$ for a Pb-208 nucleus?
- (b) Given the energy levels of this potential, $E_N = (N + \frac{3}{2})\hbar\omega U_0$ with N = 2(n-1) + land $n \ge 1$, $l \ge 0$, determine the nuclear shell filling for neutrons (or protons) and the pertinent totals for filled shells.
- (c) Now include a spin-orbit coupling of type

$$U(r) = U_{HO}(r) - \frac{2}{\hbar^2} \alpha \vec{L} \cdot \vec{S}$$
⁽²⁾

where \vec{S} is the nucleon's spin- $\frac{1}{2}$ operator and α carries the dimension of energy. Determine the eigenvalues of $\vec{L} \cdot \vec{S}$ in terms of j, l and s for $j = l \pm \frac{1}{2}$ (and $s = \frac{1}{2}$), and explain how this can give rise to the nuclear magic numbers 2, 8, 20, 28, 50 and 82. What is the approximate magnitude of α for this to work out?

4.2σ - ω Model Lagrangian

The Lagrangian of the σ - ω (or Walecka) model is given by

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m_{\sigma}^2 \phi^2 - \frac{1}{4} (V_{\mu\nu})^2 + \frac{1}{2} m_{\omega}^2 V_{\mu}^2 + \bar{\psi} \left[i \partial \!\!\!/ - M_N - g_{\omega} V \!\!\!/ + g_{\sigma} \phi \right] \psi \qquad (3)$$

using the conventions defined in class.

(a) The free Dirac equation for the nucleon in momentum space is given by

$$(\not p - M_N)\psi = 0. (4)$$

Show that the ansatz $u_s = N[I_2, \vec{\sigma} \cdot \vec{p}/(\omega_p + M_N)]\chi_s$ for the 4-vector ψ is a solution, where $s=1,2, \ \chi_1=(1,0), \ \chi_2=(0,1), \ \omega_p = \sqrt{\vec{p}^2 + M_N^2}, \ I_2$ is the 2×2 identity matrix and $\vec{\sigma}$ are the 3 standard Pauli matrices.

Requiring the normalization $u_r^{\dagger} u_s = \delta_{rs}$, determine the normalization factor N.

(b) Using the Euler-Lagrange equations, derive the equations of motion for the σ , ω and nucleon field.