Homework Assignment \#4

(Due Date: Wednesday, Oct. 16, 01:50 pm, in class)
4.1 Nuclear Shell Model

$$
(1+2+2 \text { pts.) }
$$

Starting point is the spherical harmonic oscillator potential,

$$
\begin{equation*}
U_{H O}(r)=-U_{0}+\frac{1}{2} M_{N} \omega^{2} r^{2} \tag{1}
\end{equation*}
$$

for the collective nuclear mean field inside a nucleus of radius $R_{A} \simeq 1.2 A^{1 / 3}$, with $U_{0} \simeq$ -50 MeV and $U\left(R_{A}\right) \simeq 0$.
(a) How large is the oscillator quantum $\hbar \omega$ for a $\mathrm{Pb}-208$ nucleus?
(b) Given the energy levels of this potential, $E_{N}=\left(N+\frac{3}{2}\right) \hbar \omega-U_{0}$ with $N=2(n-1)+l$ and $n \geq 1, l \geq 0$, determine the nuclear shell filling for neutrons (or protons) and the pertinent totals for filled shells.
(c) Now include a spin-orbit coupling of type

$$
\begin{equation*}
U(r)=U_{H O}(r)-\frac{2}{\hbar^{2}} \alpha \vec{L} \cdot \vec{S} \tag{2}
\end{equation*}
$$

where \vec{S} is the nucleon's spin- $\frac{1}{2}$ operator and α carries the dimension of energy. Determine the eigenvalues of $\vec{L} \cdot \vec{S}$ in terms of j, l and s for $j=l \pm \frac{1}{2}$ (and $s=\frac{1}{2}$), and explain how this can give rise to the nuclear magic numbers $2,8,20,28,50$ and 82. What is the approximate magnitude of α for this to work out?

$4.2 \sigma-\omega$ Model Lagrangian

The Lagrangian of the $\sigma-\omega$ (or Walecka) model is given by

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} m_{\sigma}^{2} \phi^{2}-\frac{1}{4}\left(V_{\mu \nu}\right)^{2}+\frac{1}{2} m_{\omega}^{2} V_{\mu}^{2}+\bar{\psi}\left[i \not \partial-M_{N}-g_{\omega} V+g_{\sigma} \phi\right] \psi \tag{3}
\end{equation*}
$$

using the conventions defined in class.
(a) The free Dirac equation for the nucleon in momentum space is given by

$$
\begin{equation*}
\left(\not p-M_{N}\right) \psi=0 . \tag{4}
\end{equation*}
$$

Show that the ansatz $u_{s}=N\left[I_{2}, \vec{\sigma} \cdot \vec{p} /\left(\omega_{p}+M_{N}\right)\right] \chi_{s}$ for the 4 -vector ψ is a solution, where $s=1,2, \chi_{1}=(1,0), \chi_{2}=(0,1), \omega_{p}=\sqrt{\vec{p}^{2}+M_{N}^{2}}, I_{2}$ is the 2×2 identitiy matrix and $\vec{\sigma}$ are the 3 standard Pauli matrices.
Requiring the normalization $u_{r}^{\dagger} u_{s}=\delta_{r s}$, determine the normalization factor N.
(b) Using the Euler-Lagrange equations, derive the equations of motion for the σ, ω and nucleon field.

