Homework Assignment #2

(Due Date: Wednesday, Sept. 18, 01:50pm, in class)

2.1 Liquid Drop Model (LDM) of Nuclei

 $(1+2+1+1+1 \ pts.)$

The empirical Weizsäcker formula for the binding energy of nuclei is given by

$$E_B = \sum_{i=1}^{5} E_i = -a_1 A + a_2 A^{2/3} + a_3 \frac{Z^2}{A^{1/3}} + a_4 \frac{(A - 2Z)^2}{A} + a_5 \frac{\lambda}{A^{3/4}}$$
(1)

with A: nuclear mass number, Z: nuclear charge (in units of e), $a_1=15.75$ MeV, $a_2=17.8$ MeV, $a_3=0.71$ MeV, $a_4=23.7$ MeV and $a_5=34$ MeV with $\lambda=-1,0,1$ for e-e,e-o,o-o nuclei.

- (a) Briefly discuss the physical motivation (A and Z dependence) for each term.
- (b) Estimate the value of a_3 theoretically by modeling a nucleus (A, Z) with radius $R_A = r_0 A^{1/3}$ $(r_0 = 1.15 \text{ fm})$ by a uniform spherical charge distribution, $\rho_c(r) = \rho_{c,0} \Theta(R_A r)$. First use Poisson's law, $\Delta V(r) = -\rho(r)$, to find the static electric potential for $r < R_A$ (make sure it is continuous with the point-charge potential $V(r) = Ze/4\pi r$ for $r > R_A$). Then calculate the electric potential energy,

$$U(A, Z) = -\frac{1}{2} \int d^3 r \ V_c(r) \ \rho_c(r) \ . \tag{2}$$

- (c) Derive the value Z^* for the charge which minimizes the binding energy for fixed A. Plot the resulting valley of stability, $Z^*(N)$.
- (d) Plot $|E_B(A)|$ using $Z^*(A)$ from part (c) by subsequently adding the terms of the LDM in numerical order as written above up to (including) i = 4. In each step determine the A, if any, for which $|E_B(A)|$ is maximal.
- (e) How much energy is released when fissioning ${}^{235}U \rightarrow 2 {}^{116}Pd + 3n$? How many kg of ${}^{235}U$ have to be fissioned in 30 days at an output of 1000 MW (neglect any losses)?
- 2.2 2-Body Density Matrix in Fermi Gas Model (2+1+1 pts.) The (reduced) 2-body density matrix for a non-interacting Fermi gas of A nucleons is

$$\rho^{(2)}(\vec{r_1}, \vec{r_2}) = \frac{1}{A(A-1)V^2} \sum_{\vec{k_i}, \vec{k_j}} \left[1 - \cos(2\vec{k_{ij}} \cdot \vec{r}) \right]$$
(3)

with V: volume, $\vec{r} \equiv \vec{r}_2 - \vec{r}_1$ and $\vec{k}_{ij} = (\vec{k}_i - \vec{k}_j)/2$.

(a) Use the continuum limit for the momentum sums, $\sum_{\vec{k}_i} \to V \int_0^{k_F} \frac{d^3k_i}{(2\pi)^3}$ (also implying $A \to \infty$) to show that $\rho^{(2)}(\vec{r_1}, \vec{r_2}) = g_-(x)/V^2$ with

$$g_{-}(x) = 1 - \left[\frac{3}{x^{2}} \left(\frac{\sin x}{x} - \cos x\right)\right]^{2} .$$
 (4)

- (b) Using Taylor expansions of the sine and cosine functions, show that $\lim_{x\to 0} g_{-}(x) = 0$, i.e., $\rho^{(2)}(\vec{r_1}, \vec{r_2})$ exhibits "Pauli repulsion".
- (c) Why does the Pauli repulsion in the spatial part of the 2-nucleon density matrix not suffice to stabilize atomic nuclei at a size that increases as $R_A \propto A^{1/3}$?