(4 pts.)

(6 pts.)

Homework Assignment #1

(Due Date: Friday, Sep. 06, 01:50pm, in class)

1.1 Empirical Features of the N-N Force

- (a) In units where $\hbar = c = 1$, the Coulomb potential is given by $V_{\text{Coul}} = \pm \alpha_{\text{em}}/r$ with $\alpha_{\text{em}} = 1/137$. The deuteron binding energy is $E_B^d = 2.2 \text{ MeV}$ and its approximate size is $d_d \simeq 4 \text{ fm}$. Can the Coulomb correction be the reason for not binding the pp system?
- (b) Nucleon-nucleon scattering shows no significant evidence of a P-wave component up to center-of-mass (CM) energies of $E_{\rm CM} \simeq 10 \,{\rm MeV}$. Use this information to estimate the range, R, of the nuclear force.
- (c) When scattering a proton off a stationary hydrogen target, the elastic *D*-wave phase shifts are measured to turn from positive to negative at an incoming energy of $E_{\rm lab} \simeq 800 \,\text{MeV}$. What qualitative feature does this reveal about the *NN* force? Estimate an associated distance scale for this feature.
- (d) Energy levels in atomic nuclei reveal the presence of a spin-orbit force associated with a potential operator V
 {LS} = V{LS}(r) L
 · S
 , where L
 and and S
 denote the angular momentum and spin of the NN system, respectively.
 (i) Express the eigenvalues of the operator L
 · S
 in terms of the ones of |L
 ², |S
 ² and |J
 ², where J
 = L
 + S
 . (hint: evaluate |J
 ²)
 (ii) Explain why the spin-orbit force is absent in spin-singlet and S-wave channels.

1.2 Central Nuclear Force

In this problem we develop a schematic model for nuclear saturation.

(a) Show that the Fourier transform of a static scalar meson-exchange potential,

$$V_{\alpha}(q) = -g_{\alpha}^2 \, \frac{1}{\bar{q}^2 + m_{\alpha}^2} \,, \tag{1}$$

yields the standard Yukawa potential in coordinate space, $V(r) = -g_{\alpha}^2/(4\pi) e^{-m_{\alpha}r}/r$.

- (b) Graph the *r*-dependence (in units of [fm]) of the attractive scalar potential (in [MeV]) from σ exchange ($\alpha = \sigma$, $m_{\sigma} = 550$ MeV, $g_{\sigma} = 10$) and of the repulsive vector potential from ω exchange ($\alpha = \omega$, $m_{\omega} = 782$ MeV, $g_{\omega} = 17$), as well as their sum (use the conversion factor $\hbar c = 197.33$ MeV fm).
- (c) From the minimum of the central potential in part (b) estimate the nuclear saturation (ground-state) density, as well as the binding energy per nucleon. For the latter, assume 6 nearest neighbors and an average kinetic energy of $KE \simeq 25 \,\text{MeV}$ per nucleon.