Homework Assignment #7

(Due Date: Monday, Dec. 03, 01:50 pm, in class)

7.1 Heavy-Quark Potential and Bottomonium Spectrum (2+2 pts.) The static QCD potential between a heavy quark and antiquark is well represented by

$$V_{Q\bar{Q}}(r) = -\frac{4}{3}\frac{\alpha_s}{r} + \sigma r \tag{1}$$

with a string tension of $\sigma = 1 \text{ GeV/fm}$. The ground and first excited state of the Upsilon spectrum (bottom-antibottom bound states) have masses of $M(\Upsilon(1S)) = 9.46$ GeV and $M(\Upsilon(2S)) = 10.02$ GeV, respectively.

- (a) Assuming $\alpha_s=0.5$ and neglecting the linear confining term in the potential, use the hydrogen expression for the bound-state energy to estimate the bottomonium binding energies. Can you find a reasonable value for the bottom-quark mass, m_b , to establish approximate agreement with the above masses?
- (b) Evaluate the correction to the 2 binding energies by evaluating the confining term assuming hydrogen-like radii of the two Υ states. Are the corrections in each case "large" or "small"?
- 7.2 Bag Model of Hadron Structure (2+2+2 pts.)In the MIT bag model, the QCD vacuum is modeled by a background field generating pressure P = -B and energy density $\epsilon = B$, where the bag constant B is defined as negative. Hadrons are constructed as "bags" of empty vacuum stabilized by the kinetic energy of the quarks inside. In the following assume a spherical bag.
 - (a) For simplicity, approximate the quarks as massless and spinless particles described by the free Klein-Gordon equation within the bag,

$$\Box \phi = 0 . (2)$$

Find the stationary ground-state solution for the radial wave function by requiring it to vanish at the boundary, to find the minimal momentum, k_{\min} , of each quark.

- (b) Write down the total energy of a N_q -quark bag and find the radius, $R_{\min}(B, N_q)$, which minimizes this energy (N_q : no. of quarks in the bag); to improve your estimate, use $k_{\min} = 2.04/R$ from the Dirac equation.
- (c) Equate the minimum energy to the proton mass to find the explicit values for bag radius (in fm) and bag constant, B (in GeV/fm³). By how many percent does the calculated radius differ from the experimental result $\langle R_p^2 \rangle^{1/2} \simeq 0.8$ fm? (Convert the latter into the proton radius assuming a 3-D spherical, homogeneous charge distribution.)