Homework Assignment \#7

(Due Date: Monday, Dec. 03, 01:50 pm, in class)
7.1 Heavy-Quark Potential and Bottomonium Spectrum
(2+2 pts.)
The static QCD potential between a heavy quark and antiquark is well represented by

$$
\begin{equation*}
V_{Q \bar{Q}}(r)=-\frac{4}{3} \frac{\alpha_{s}}{r}+\sigma r \tag{1}
\end{equation*}
$$

with a string tension of $\sigma=1 \mathrm{GeV} / \mathrm{fm}$. The ground and first excited state of the Upsilon spectrum (bottom-antibottom bound states) have masses of $M(\Upsilon(1 S))=9.46 \mathrm{GeV}$ and $M(\Upsilon(2 S))=10.02 \mathrm{GeV}$, respectively.
(a) Assuming $\alpha_{s}=0.5$ and neglecting the linear confining term in the potential, use the hydrogen expression for the bound-state energy to estimate the bottomonium binding energies. Can you find a reasonable value for the bottom-quark mass, m_{b}, to establish approximate agreement with the above masses?
(b) Evaluate the correction to the 2 binding energies by evaluating the confining term assuming hydrogen-like radii of the two Υ states. Are the corrections in each case "large" or "small"?
7.2 Bag Model of Hadron Structure ($2+2+2$ pts. $)$
In the MIT bag model, the QCD vacuum is modeled by a background field generating pressure $P=-B$ and energy density $\epsilon=B$, where the bag constant B is defined as negative. Hadrons are constructed as "bags" of empty vacuum stabilized by the kinetic energy of the quarks inside. In the following assume a spherical bag.
(a) For simplicity, approximate the quarks as massless and spinless particles described by the free Klein-Gordon equation within the bag,

$$
\begin{equation*}
\square \phi=0 . \tag{2}
\end{equation*}
$$

Find the stationary ground-state solution for the radial wave function by requiring it to vanish at the boundary, to find the minimal momentum, $k_{\min }$, of each quark.
(b) Write down the total energy of a N_{q}-quark bag and find the radius, $R_{\min }\left(B, N_{q}\right)$, which minimizes this energy (N_{q} : no. of quarks in the bag); to improve your estimate, use $k_{\text {min }}=2.04 / R$ from the Dirac equation.
(c) Equate the minimum energy to the proton mass to find the explicit values for bag radius (in fm) and bag constant, B (in $\mathrm{GeV} / \mathrm{fm}^{3}$). By how many percent does the calculated radius differ from the experimental result $\left\langle R_{p}^{2}\right\rangle^{1 / 2} \simeq 0.8 \mathrm{fm}$? (Convert the latter into the proton radius assuming a 3-D spherical, homogeneous charge distribution.)

