Homework Assignment \#6

(Due Date: Monday, Nov. 26, 01:50 pm, in class)

6.1 Electron Scattering and Parton Model

$(2+1+2+2$ pts. $)$
The elastic cross section for scattering an electron (with initial and final 4-momenta (E, \vec{k}) and ($\left.E^{\prime}, \overrightarrow{k^{\prime}}\right)$, respectively) off a spin- $\frac{1}{2}$ point particle of mass M can be written as

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4}(\theta / 2)} \frac{E^{\prime}}{E}\left(\cos ^{2} \frac{\theta}{2}-\frac{q^{2}}{2 M^{2}} \sin ^{2} \frac{\theta}{2}\right) \tag{1}
\end{equation*}
$$

where $\theta=\angle\left(\vec{k}, \overrightarrow{k^{\prime}}\right)$ is the scattering angle (neglect the electron mass).
(a) Show that, for fixed incident lab energy, the scattering angle is the only independent variable, by expressing E^{\prime} and the 4-momentum transfer q^{2} in terms of θ.
(b) For inelastic scattering, the outgoing proton breaks up and another variable (usually taken as E^{\prime} or $\nu=E-E^{\prime}$) together with 2 structure functions, $W_{1,2}$, are needed. The differential cross section takes the form

$$
\begin{equation*}
\frac{d \sigma}{d \Omega d E^{\prime}}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4}(\theta / 2)}\left(W_{2}\left(\nu, q^{2}\right) \cos ^{2} \frac{\theta}{2}+2 W_{1}\left(\nu, q^{2}\right) \sin ^{2} \frac{\theta}{2}\right) . \tag{2}
\end{equation*}
$$

Show that for $W_{2}\left(\nu, q^{2}\right)=\delta\left(\nu+q^{2} / 2 M\right)$ and $2 W_{1}\left(\nu, q^{2}\right)=-q^{2} /\left(2 M^{2}\right) \delta\left(\nu+q^{2} / 2 M\right)$, the elastic "point-like" cross section, Eq. (1), is recovered.
(c) Introduce "new" point-like constituents with mass $m=x^{\prime} M$ by setting $W_{2}\left(\nu, q^{2}\right)=$ $\delta\left(\nu+q^{2} / 2 m\right)$ and $2 W_{1}\left(\nu, q^{2}\right)=-q^{2} /\left(2 m^{2}\right) \delta\left(\nu+q^{2} / 2 m\right)$ in Eq. (2). Show that the redefined structure functions $F_{1} \equiv M W_{1}$ and $F_{2} \equiv \nu W_{2}$ "scale", i.e., only depend on the ratio $\omega=-2 M \nu / q^{2}$ for given x^{\prime} of a "parton", not separately on ν and q^{2}.
(d) Integrate over x^{\prime} with charge $\left(e_{i}^{2}\right)$ and probability $\left(f_{i}\left(x^{\prime}\right)\right)$ weights to show

$$
\begin{equation*}
2 x F_{1}(x)=F_{2}(x)=\sum_{i} e_{i}^{2} x f_{i}(x) \tag{3}
\end{equation*}
$$

where $x \equiv 1 / \omega$ and the sum is over parton species in the proton $(i=u, \bar{u}, d, \bar{d}, s, \bar{s})$.

6.2 Local Gauge Invariance of QCD Lagrangian

The QCD Lagrangian is defined by

$$
\mathcal{L}_{\mathrm{QCD}}=\bar{q}\left(i \gamma^{\mu} D_{\mu}-\hat{m}_{q}\right) q-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}
$$

with the covariant derivative $D_{\mu} \equiv \partial_{\mu}+i g_{s} T_{a} G_{\mu}^{a}$ where $T_{a}=\lambda_{a} / 2$ are given by the Gellmann matrices $\lambda_{1 \ldots 8}$ and satisfy $\left[T_{a}, T_{b}\right]=i f_{a b c} T_{c}$ (double indices summed over).
(a) Show that the quark part of $\mathcal{L}_{\mathrm{QCD}}$ is invariant under the following local infinitesimal phase rotation:
$q(x) \rightarrow\left[1+i \alpha_{a}(x) T_{a}\right] q(x) \quad, \quad G_{\mu}^{a}(x) \rightarrow G_{\mu}^{a}(x)-\frac{1}{g_{s}} \partial_{\mu} \alpha_{a}(x)-f_{a b c} \alpha_{b}(x) G_{\mu}^{c}(x)$.
(b) What are key differences between the coupling "constants" in $\mathrm{QCD}, \alpha_{s}\left(Q^{2}\right)$, and QED, $\alpha_{\mathrm{em}}\left(Q^{2}\right)$?

