Name:

Homework Assignment #3

(Due Date: Fri, Oct. 12, 01:50pm, in class)

3.1 Brueckner-Bethe-Goldstone (BBG) Theory of Nuclear Matter (3+3+2+1+1 pts.)Starting point is the A-nucleon Schrödinger equation,

$$\hat{H} \Psi_{\alpha_1 \cdots \alpha_A} = E \Psi_{\alpha_1 \cdots \alpha_A} , \quad \hat{H} = \sum_i^A \hat{T}_i + \sum_{i < j}^A \hat{V}_{ij}$$
(1)

with single-nucleon kinetic-energy operators \hat{T}_i and two-nucleon potential operators \hat{V}_{ij} (= $V(\vec{r}_i, \vec{r}_j)$ in coordinate space).

(a) Show that the plane wave $\phi_{\alpha}(\vec{r}) = \exp(i\vec{k}_{\alpha}\cdot\vec{r})/\sqrt{V}$ satisfies the in-medium 1-body Schrödinger equation in coordinate space,

$$T(r)\phi_{\alpha}(\vec{r}) + \int_{-\infty}^{+\infty} d^3r' U(\vec{r} - \vec{r}')\phi_{\alpha}(\vec{r}') = \epsilon_{\alpha}\phi_{\alpha}(\vec{r})$$
(2)

with $\epsilon_{\alpha} = \vec{k}_{\alpha}^2/2m_N + U_{\alpha}$, where $U_{\alpha} = U(k_{\alpha})$ denotes the Fourier transform of $U(\vec{r})$. Then use the non-interacting Fermi-gas approximation, $\Psi_{\alpha_1\cdots\alpha_A} = \Phi_{\alpha_1\cdots\alpha_A}$, to show that the nuclear ground-state energy is given by

$$E = \langle \alpha_1 \cdots \alpha_A | \hat{H} | \Phi_{\alpha_1 \cdots \alpha_A} \rangle = \sum_{k_\alpha < k_F} \left(\frac{k_\alpha^2}{2m_N} + \frac{1}{2} U_\alpha \right) , \qquad (3)$$

where $|\alpha_1 \cdots \alpha_A\rangle \propto \phi_{\alpha_1} \cdots \phi_{\alpha_A}$ with norm $\langle \alpha_2 \cdots \alpha_A | \Phi_{\alpha_1 \cdots \alpha_A} \rangle = \phi_{\alpha_1}$. Start by multiplying Eq. (1) with $\langle \alpha_2 \cdots \alpha_A |$ to identify U_{α} in terms of V_{ij} . What is the main problem in calculating U_{α} with the non-interacting Fermi-gas wavefunction?

(b) Defining the 1- and *interacting* 2-nucleon part of the A-body wavefunction as $\Psi_{\alpha_1} = \langle \alpha_2 \cdots \alpha_A | \Psi_{\alpha_1 \cdots \alpha_A} \rangle$ and $\Psi_{\alpha_1 \alpha_2} = \langle \alpha_3 \cdots \alpha_N | \Psi_{\alpha_1 \cdots \alpha_A} \rangle$, with norm $\langle \alpha_1 \cdots \alpha_N | \Psi_{\alpha_1 \cdots \alpha_A} \rangle = 1$ as before, show that

$$E = \sum_{\alpha_i} \frac{k_{\alpha_i}^2}{2m_N} + \sum_{i < j} \langle \alpha_i \alpha_j | V_{ij} | \Psi_{\alpha_i \alpha_j} \rangle .$$
(4)

- (c) Express the potential term in Eq. (4) via the Brueckner *G*-matrix and relate it to U_{α} . Write down the Bethe-Goldstone equation for $\Psi_{\alpha_i\alpha_j}$ and explain the emergence of a self-consistency problem when solving it.
- (d) What is the main effect in the solution of the BBG 2-body wavefunction compared to the noninteracting Fermi gas result? How does this solve the problem (referred to in part (a)) of calculating the interaction-energy contribution to the nuclear groundstate energy, E, in the Fermi-gas approximation?
- (e) Sketch the results of the BBG theory with realistic NN potentials for the saturation curve of nuclear matter, $\frac{E_B}{A}(k_F)$. Does BBG theory fully succeed in describing the empirical saturation regime?