Name:

Homework Assignment \#2

(Due Date: Wednesday, Sept. 26, 01:50pm, in class)
2.1 Liquid Drop Model (LDM) of Nuclei
$(1+1+2+1+1$ pts. $)$
The empirical Weizsäcker/LDM formula for the binding energy of nuclei is given by

$$
\begin{equation*}
E_{B}=\sum_{i=1}^{5} E_{i}=-a_{1} A+a_{2} A^{2 / 3}+a_{3} \frac{Z^{2}}{A^{1 / 3}}+a_{4} \frac{(A-2 Z)^{2}}{A}+a_{5} \frac{\lambda}{A^{3 / 4}} \tag{1}
\end{equation*}
$$

with A : nuclear mass number, Z : nuclear charge (in units of e) and positive coefficients a_{i} (in units of MeV).
(a) Briefly discuss the physical motivation for each term.
(b) Derive the value Z^{*} for the charge which minimizes the binding energy for fixed A. Plot the resulting valley of stability, $Z^{*}(N)$.
(c) Use plotting software to graph $-E_{B}(A)$ using $Z^{*}(A)$ from part (b) by subsequently adding the terms of the LDM in numerical order as written above up to $i=4$. For each curve read off the value of A, if any, for which $-E_{B}(A)$ is maximal. Here and below use $a_{1}=15.75 \mathrm{MeV}, a_{2}=17.8 \mathrm{MeV}, a_{3}=0.71 \mathrm{MeV}, a_{4}=23.7 \mathrm{MeV}$, $a_{5}=34 \mathrm{MeV}$ and $\lambda=-1,0,1$ for e-e,e-o,o-o nuclei, respectively.
(d) Use the LDM to calculate the the binding energies of ${ }_{92}^{235} \mathrm{U},{ }_{56}^{144} \mathrm{Ba}$ and ${ }_{36}^{89} \mathrm{Kr}$, and compare to the experimental values that you find on the Internet.
(e) How much energy is set free when fissioning a ${ }_{92}^{235} U$ nucleus into ${ }_{56}^{144} \mathrm{Ba}+{ }_{36}^{89} \mathrm{Kr}+2 n$ (once all are far separated)? Why does ${ }_{92}^{235} U$ not fission spontaneously?
(Hint: compute the Coulomb repulsion between ${ }_{56}^{144} \mathrm{Ba}$ and ${ }_{36}^{89} \mathrm{Kr}$ when their surfaces just touch, with $V_{C}(d)=Z_{1} Z_{2} \alpha / d$ and nuclear radii $R_{A}=r_{0} A^{1 / 3}$ with $\left.r_{0}=1.1 \mathrm{fm}\right)$.
2.2 One- and Two-Body Density Matrix in Fermi Gas Model (FGM)
($2+1+1$ pts.)
The (reduced) 2-body density matrix in the FGM has been shown to take the form

$$
\begin{equation*}
\rho^{(2)}\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{1}{A(A-1) V^{2}} \sum_{\vec{k}_{1}, \vec{k}_{2}}\left[1-\cos \left(2 \vec{k}_{i j} \cdot \vec{r}\right)\right] \tag{2}
\end{equation*}
$$

with $\vec{r} \equiv \vec{r}_{2}-\vec{r}_{1}$ and $\vec{k}_{i j}=\left(\vec{k}_{i}-\vec{k}_{j}\right) / 2$.
(a) Using the continuum limit for the momentum sums, $\sum_{\vec{k}} \rightarrow V \int_{0}^{k_{F}} \frac{d^{3} k}{(2 \pi)^{3}}$ (also implying $A \rightarrow \infty)$, show that $\rho^{(2)}\left(\vec{r}_{1}, \vec{r}_{2}\right)=g_{-}(x) / V^{2}$ with

$$
\begin{equation*}
g_{-}(x)=1-\left[\frac{3}{x^{2}}\left(\frac{\sin x}{x}-\cos x\right)\right]^{2} \tag{3}
\end{equation*}
$$

(b) Quote the result for $\rho^{(2)}\left(\vec{r}_{1}, \vec{r}_{2}\right)$ for a symmetric spatial part of the A-body wave function. Use plotting software to graph both $g_{ \pm}(x)$ over a relevant range in r for $k_{F}=265 \mathrm{MeV}$. Interpret the behaviors for $x \rightarrow 0$.
(c) Discuss the relevance of both $g_{ \pm}(x)$ in building the total A-nucleon wave functions, i.e., including the spin-isospin parts.

