Homework Assignment #7

(Due Date: Thursday, November 20, 05:30 pm, in class)

- 7.1 Baryon Wave Functions and Magnetic Moments in the Constituent-Quark Model (7 pts.) As discussed in class, the physical realizations of the baryon wave functions in the Constituent-Quark Model (CQM) correspond to fully symmetric flavor-spin parts (notation: use $u^{\uparrow}(s^{\downarrow})$ for an up (strange) quark with spin up (down), etc.; identify the position of writing a quark in the baryon wave function with the particle label, so that the particle exchange operator for, e.g., quark 1 and 3, acts as follows: $P_{13}|u^{\uparrow}d^{\uparrow}s^{\downarrow}\rangle = |s^{\downarrow}d^{\uparrow}u^{\uparrow}\rangle$).
 - (a) The baryon decuplet is realized by combining the fully symmetric flavor and spin wave functions in the (10, 4) representation. Starting from the wave function of the $\Delta^{-}(S_z=+\frac{3}{2})=|d^{\uparrow}d^{\uparrow}d^{\uparrow}\rangle$, construct the (normalized) wave functions of the remaining 3Δ states, as well as of the $\Sigma^{*,+}(S_z=+\frac{3}{2})$ and $\Xi^{*,0}(S_z=+\frac{3}{2})$, by using the flavor step operators, $\lambda^{I}_{\pm} = \frac{1}{2}(\lambda_1 \pm i\lambda_2)$ and $\lambda^{U}_{\pm} = \frac{1}{2}(\lambda_6 \pm i\lambda_7)$ for *I* and *U*-spin, respectively.
 - (b) The baryon octet representation corresponds to $\frac{1}{\sqrt{2}}[(8_S, 2_S) + (8_A, 2_A)]$, where "S" ("A") denotes (anti-) symmetry with respect to the first 2 quarks. Construct the flavor-spin wave function of a $S_z = +\frac{1}{2}$ proton. Start from the 1 \leftrightarrow 2 antisymmetric flavor part, $p_A = \frac{1}{\sqrt{2}}(ud du)u$, and construct p_S by requiring orthogonality to both p_A and the decuplet Δ^+ ; then combine p_A and p_S with the 1 \leftrightarrow 2 anti-/symmetric spin wave functions χ_A and χ_S , respectively.
 - (c) Explicitly verify symmetry of the flavor-spin proton wave function constructed in (b) under quark exchange P_{12} , P_{13} and P_{23} .
 - (d) In the CQM the magnetic moment operator for a hadron h is defined by

$$\mu_h = \sum_i \mu_i \ \sigma_z^i \quad , \quad \mu_i = \frac{e_i}{2m_i} \tag{1}$$

where the sum is over all constituent quarks (charge e_i and mass m_i) in the hadron. Compute the magnetic moment of the (spin-up) proton, μ_p , in terms of the *u*and *d*-quark ones, $\mu_{u,d}$. Obtain the neutron magnetic moment by the interchange $u \leftrightarrow d$, and compute μ_n/μ_p assuming $m_u=m_d$. How does your result compare to the experimental value of -0.685?

7.2 Electron Scattering and Parton Model (3 pts.)

The elastic cross section for scattering an electron (with initial and final 4-momenta (E, \vec{k}) and $(E', \vec{k'})$, respectively) off a spin- $\frac{1}{2}$ point particle of mass M can be written as

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4E^2 \sin^4(\theta/2)} \frac{E'}{E} \left(\cos^2 \frac{\theta}{2} - \frac{q^2}{2M^2} \sin^2 \frac{\theta}{2} \right)$$
(2)

where $\theta = \angle(\vec{k}, \vec{k}')$ is the scattering angle (neglect the electron mass).

- (a) Show that, for given incident energy in the lab system, the scattering angle is the only independent variable, by expressing E' and the 4-momentum transfer q^2 in terms of θ .
- (b) For inelastic scattering, the outgoing proton breaks up and another variable (usually taken as E' or $\nu = E E'$) together with 2 structure functions, $W_{1,2}$, are needed. The differential cross section takes the form

$$\frac{d\sigma}{d\Omega \ dE'} = \frac{\alpha^2}{4E^2 \sin^4(\theta/2)} \left(W_2(\nu, q^2) \cos^2\frac{\theta}{2} + 2W_1(\nu, q^2) \sin^2\frac{\theta}{2} \right) . \tag{3}$$

Show that for $W_2(\nu, q^2) = \delta(\nu + q^2/2M)$ and $2W_1(\nu, q^2) = -q^2/(2M^2) \,\delta(\nu + q^2/2M)$, the elastic "point-like" cross section, Eq. (2), is recovered.

(c) Alternatively, introduce "new" point-like constituents with mass m = xM by setting $W_2(\nu, q^2) = \delta(\nu + q^2/2m)$ and $2W_1(\nu, q^2) = -q^2/(2m^2) \ \delta(\nu + q^2/2m)$ in Eq. (3). Show that the redefined structure functions $F_1 \equiv MW_1$ and $F_2 \equiv \nu W_2$ lead to a cross section which only depends on the "mass fraction" x of the "partons", and not separately on ν and q^2 .