Homework Assignment \#7

(Due Date: Thursday, November 20, 05:30 pm, in class)
7.1 Baryon Wave Functions and Magnetic Moments in the Constituent-Quark Model (7 pts.) As discussed in class, the physical realizations of the baryon wave functions in the Constituent-Quark Model (CQM) correspond to fully symmetric flavor-spin parts (notation: use $u^{\uparrow}\left(s^{\downarrow}\right)$ for an $u p$ (strange) quark with spin up (down), etc.; identify the position of writing a quark in the baryon wave function with the particle label, so that the particle exchange operator for, e.g., quark 1 and 3 , acts as follows: $P_{13}\left|u^{\uparrow} d^{\uparrow} s^{\downarrow}\right\rangle=\left|s^{\downarrow} d^{\uparrow} u^{\uparrow}\right\rangle$).
(a) The baryon decuplet is realized by combining the fully symmetric flavor and spin wave functions in the $(10,4)$ representation. Starting from the wave function of the $\Delta^{-}\left(S_{z}=+\frac{3}{2}\right)=\left|d^{\uparrow} d^{\uparrow} d^{\uparrow}\right\rangle$, construct the (normalized) wave functions of the remaining 3Δ states, as well as of the $\Sigma^{*,+}\left(S_{z}=+\frac{3}{2}\right)$ and $\Xi^{*, 0}\left(S_{z}=+\frac{3}{2}\right)$, by using the flavor step operators, $\lambda_{ \pm}^{I}=\frac{1}{2}\left(\lambda_{1} \pm i \lambda_{2}\right)$ and $\lambda_{ \pm}^{U}=\frac{1}{2}\left(\lambda_{6} \pm i \lambda_{7}\right)$ for I - and U-spin, respectively.
(b) The baryon octet representation corresponds to $\frac{1}{\sqrt{2}}\left[\left(8_{S}, 2_{S}\right)+\left(8_{A}, 2_{A}\right)\right]$, where " S " (" A ") denotes (anti-) symmetry with respect to the first 2 quarks. Construct the flavor-spin wave function of a $S_{z}=+\frac{1}{2}$ proton. Start from the $1 \leftrightarrow 2$ antisymmetric flavor part, $p_{A}=\frac{1}{\sqrt{2}}(u d-d u) u$, and construct p_{S} by requiring orthogonality to both p_{A} and the decuplet Δ^{+}; then combine p_{A} and p_{S} with the $1 \leftrightarrow 2$ anti-/symmetric spin wave functions χ_{A} and χ_{S}, respectively.
(c) Explicitly verify symmetry of the flavor-spin proton wave function constructed in (b) under quark exchange P_{12}, P_{13} and P_{23}.
(d) In the CQM the magnetic moment operator for a hadron h is defined by

$$
\begin{equation*}
\mu_{h}=\sum_{i} \mu_{i} \sigma_{z}^{i} \quad, \quad \mu_{i}=\frac{e_{i}}{2 m_{i}} \tag{1}
\end{equation*}
$$

where the sum is over all constituent quarks (charge e_{i} and mass m_{i}) in the hadron. Compute the magnetic moment of the (spin-up) proton, μ_{p}, in terms of the u and d-quark ones, $\mu_{u, d}$. Obtain the neutron magnetic moment by the interchange $u \leftrightarrow d$, and compute μ_{n} / μ_{p} assuming $m_{u}=m_{d}$. How does your result compare to the experimental value of -0.685 ?

7.2 Electron Scattering and Parton Model

The elastic cross section for scattering an electron (with initial and final 4-momenta (E, \vec{k}) and ($\left.E^{\prime}, \overrightarrow{k^{\prime}}\right)$, respectively) off a spin- $\frac{1}{2}$ point particle of mass M can be written as

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4}(\theta / 2)} \frac{E^{\prime}}{E}\left(\cos ^{2} \frac{\theta}{2}-\frac{q^{2}}{2 M^{2}} \sin ^{2} \frac{\theta}{2}\right) \tag{2}
\end{equation*}
$$

where $\theta=\angle\left(\vec{k}, \vec{k}^{\prime}\right)$ is the scattering angle (neglect the electron mass).
(a) Show that, for given incident energy in the lab system, the scattering angle is the only independent variable, by expressing E^{\prime} and the 4 -momentum transfer q^{2} in terms of θ.
(b) For inelastic scattering, the outgoing proton breaks up and another variable (usually taken as E^{\prime} or $\nu=E-E^{\prime}$) together with 2 structure functions, $W_{1,2}$, are needed. The differential cross section takes the form

$$
\begin{equation*}
\frac{d \sigma}{d \Omega d E^{\prime}}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4}(\theta / 2)}\left(W_{2}\left(\nu, q^{2}\right) \cos ^{2} \frac{\theta}{2}+2 W_{1}\left(\nu, q^{2}\right) \sin ^{2} \frac{\theta}{2}\right) \tag{3}
\end{equation*}
$$

Show that for $W_{2}\left(\nu, q^{2}\right)=\delta\left(\nu+q^{2} / 2 M\right)$ and $2 W_{1}\left(\nu, q^{2}\right)=-q^{2} /\left(2 M^{2}\right) \delta\left(\nu+q^{2} / 2 M\right)$, the elastic "point-like" cross section, Eq. (2), is recovered.
(c) Alternatively, introduce "new" point-like constituents with mass $m=x M$ by setting $W_{2}\left(\nu, q^{2}\right)=\delta\left(\nu+q^{2} / 2 m\right)$ and $2 W_{1}\left(\nu, q^{2}\right)=-q^{2} /\left(2 m^{2}\right) \delta\left(\nu+q^{2} / 2 m\right)$ in Eq. (3). Show that the redefined structure functions $F_{1} \equiv M W_{1}$ and $F_{2} \equiv \nu W_{2}$ lead to a cross section which only depends on the "mass fraction" x of the "partons", and not separately on ν and q^{2}.

