Homework Assignment \#3

(Due Date: Thursday, October 02, 05:30 pm, in class)
3.1 Free and In-Medium Nucleon-Nucleon Scattering: T- and G-matrix (3+3+3+2 pts.) In class the Lippmann-Schwinger equation (LSE) for the T-matrix for the scattering of 2 nucleons in free space has been introduced,

$$
\begin{equation*}
T\left(E ; \vec{k}^{\prime}, \vec{k}\right)=V\left(\vec{k}^{\prime}, \vec{k}\right)+\int \frac{d^{3} p}{(2 \pi)^{3}} V\left(\vec{k}^{\prime}, \vec{p}\right) \frac{1}{E-p^{2} / m+i \eta} T(E ; \vec{p}, \vec{k}) \tag{1}
\end{equation*}
$$

where $\pm \vec{k}$ and $\pm \vec{k}^{\prime}$ denote the relative momentum of the 2 nucleons before and after the scattering, and E is the total kinetic energy, with $E=k^{2} / m=k^{\prime 2} / m, m=940 \mathrm{MeV}$ the nucleon mass and η infinitesimal (neglect spin-isospin except for nuclear densities).
(a) Using the partial wave expansion for both potential V and T-matrix,

$$
\begin{equation*}
X\left(\vec{k}^{\prime}, \vec{k}\right)=4 \pi \sum_{l=0}^{\infty}(2 l+1) P_{l}\left(u_{k^{\prime} k}\right) X_{l}\left(k^{\prime}, k\right) \tag{2}
\end{equation*}
$$

as well as azimuthal symmetry, show that the LSE can be reduced to

$$
\begin{equation*}
T_{l}\left(E ; k^{\prime}, k\right)=V_{l}\left(k^{\prime}, k\right)+\frac{2}{\pi} \int p^{2} d p V_{l}\left(k^{\prime}, p\right) \frac{1}{E-p^{2} / m+i \eta} T_{l}(E ; p, k) \tag{3}
\end{equation*}
$$

in each partial wave l. In eq. (2), $u_{k^{\prime} k}=\cos \left(\alpha_{k^{\prime} k}\right)$ with $\alpha_{k^{\prime} k}=\angle\left(\overrightarrow{k^{\prime}}, \vec{k}\right)$; make use of the following identity for the Legendre polynomials

$$
\begin{equation*}
\int d u_{p k} P_{l^{\prime}}\left(u_{k^{\prime} p}\right) P_{l}\left(u_{p k}\right)=\frac{2 \delta_{l l^{\prime}}}{2 l+1} P_{l}\left(u_{k^{\prime} k}\right) \tag{4}
\end{equation*}
$$

(b) Concentrate on the S-wave channel $(l=0)$ and approximate the $N-N$ interaction by the sum of 2 schematic potentials associated with σ - and ω-meson exchange,

$$
\begin{equation*}
V_{0}^{\sigma}\left(k^{\prime}, k\right)=-\frac{g_{\sigma}^{2}}{4 \pi} \frac{F_{\sigma}(k) F_{\sigma}\left(k^{\prime}\right)}{m_{\sigma}^{2}} \quad, \quad V_{0}^{\omega}\left(k^{\prime}, k\right)=+\frac{g_{\omega}^{2}}{4 \pi} \frac{F_{\omega}(k) F_{\omega}\left(k^{\prime}\right)}{m_{\omega}^{2}} \tag{5}
\end{equation*}
$$

hadronic formfactors, $F(k)=\Lambda^{2} /\left(\Lambda^{2}+k^{2}\right)$, simulate the finite size of the hadrons and ensure the convergence of the 1-D LSE. Write down explicitly the first 3 terms of the Born series for the T-matrix; exploit the separability of the above potentials, $V\left(k^{\prime}, k\right)=v\left(k^{\prime}\right) v(k)$, to resum the T-matrix using a geometric series to obtain

$$
\begin{equation*}
T_{0}\left(E ; k^{\prime}, k\right)=\frac{V_{0}\left(k^{\prime}, k\right)}{1-\Pi(E)} \quad, \quad \Pi(E)=\frac{2}{\pi} \int p^{2} d p \frac{V_{0}(p)}{E-p^{2} / m+i \eta} \tag{6}
\end{equation*}
$$

(c) For S-wave scattering, the total $N-N$ cross section takes the form

$$
\begin{equation*}
\sigma_{\text {tot }}^{l=0}(E)=4 \pi m^{2}\left|T_{0}(E)\right|^{2} \tag{7}
\end{equation*}
$$

To evaluate the "loop" function, $\Pi(E)$, make us of the following decomposition into real and imaginary parts:

$$
\begin{equation*}
\int d p \frac{f(p)}{p_{0}^{2}-p^{2}+i \eta}=P P \int_{0}^{\infty} d p \frac{f(p)}{p_{0}^{2}-p^{2}}+\int d p f(p)(-i \pi) \delta\left(p_{0}^{2}-p^{2}\right) \tag{8}
\end{equation*}
$$

(here: $p_{0}^{2}=m E$). The principle-value $(P P)$ integral for the real part of $\Pi(E)$ requires a numerical integration. To avoid numerical instabilities when integrating over the pole, use the following "regularization" trick

$$
\begin{equation*}
P P \int_{0}^{\infty} d p \frac{f(p)}{p_{0}^{2}-p^{2}}=P P \int_{0}^{\infty} d p \frac{f(p)-f\left(p_{0}\right)}{p_{0}^{2}-p^{2}}, \quad \text { since } \quad P P \int_{0}^{\infty} \frac{d p}{p_{0}^{2}-p^{2}}=0 \tag{9}
\end{equation*}
$$

Plot the cross section in $[\mathrm{mb}]=\left[0.1 \mathrm{fm}^{2}\right]$ from threshold to $E=150 \mathrm{MeV}$ using the following values for the potential parameters: $m_{\sigma}=550 \mathrm{MeV}, g_{\sigma}=10.0, \Lambda_{\sigma}=1000 \mathrm{MeV}$, $m_{\omega}=782.6 \mathrm{MeV}, g_{\omega}=11.65, \Lambda_{\sigma}=1500 \mathrm{MeV}$; use $\hbar c=197.33 \mathrm{MeVfm}$.
(d) Compute the in-medium $N-N G$-matrix by implementing a Pauli-Blocking factor, $\left[1-f\left(\epsilon_{p} ; \mu_{N}, T\right)\right]^{2}$, into the integral of the LSE (3), where

$$
\begin{equation*}
f\left(\epsilon_{p} ; \mu_{N}, T\right)=\frac{1}{\exp \left[\left(\epsilon_{p}-\mu_{N}\right) / T\right]+1} \tag{10}
\end{equation*}
$$

with $\epsilon_{p}=p^{2} / 2 m$ and chemical potential $\mu_{N}=k_{F}^{2} / 2 m$ (k_{F} : Fermi momentum). Plot the in-medium $N-N S$-wave cross section for $k_{F}=220 \mathrm{MeV}$ with temperature $T=1 \mathrm{MeV}$ and $T=5 \mathrm{MeV}$.

