Homework Assignment \#7

(Due Date: Tuesday, April 02, 05:30 pm, in class)
7.1 Flory Exponent in Random/Self-Avoiding Walks (cf. Ex. 7.5 in textbook) (2+2+2 pts.) Write a FORTRAN code to simulate random walks on a 2D square lattice starting from the origin.
(a) Simulate unrestricted random walks up to $n=100$ steps, averaging over $n_{w} \simeq$ $2 \cdot 10^{4}$ walks for each $n>3$. Plot $\left\langle r_{n}^{2}\right\rangle$ as function of $n\left(r^{2}=x^{2}+y^{2}\right)$, and extract the Flory exponent in $\sqrt{\left\langle r^{2}\right\rangle} \equiv A t^{\nu}(t$ large $)$, by an eyeball fit.
(b) Simulate a 2D self-avoiding random walk using the "trial" method discussed in class. Make sure that each walk of given step-length n (polymer with given molecule number, n) has the same probability, i.e., each step direction should always be selected with probability $1 / 3$ (except for the first step). Plot $\left\langle r_{n}^{2}\right\rangle$ vs. n. Go to at least $n=50$ and use a sufficiently large n_{w}. To extract the Flory exponent, first show analytically that

$$
\begin{equation*}
\frac{\left\langle r_{n+1}^{2}\right\rangle}{\left\langle r_{n}^{2}\right\rangle}=1+2 \nu \frac{1}{n} \tag{1}
\end{equation*}
$$

for large n. Replot your 2D SAW data using this relation and determine the value of ν by an eyeball fit. Re-evaluate ν from part (a) with this technique.
(b) Investigate fluctuations of the 2D random walk by extracting the variance, $\Delta\left(r_{n}^{2}\right)$, as function of n. Evaluate the exponent x in $\sigma(t) \equiv \sqrt{\Delta\left(r^{2}(t)\right)} \propto t^{x}$ by the same technique as in part (b). Sketch the result as a "1- σ " band around $\left\langle r^{2}\right\rangle$ from part (a).
7.2 Diffusion and Central Limit Theorem (cf. Ex. 7.9 in textbook) (3+1 pts.) Write a FORTRAN program to solve the 1-D diffusion equation using the finite difference method with diffusion constant $D=2$. Start from an initial density profile (e.g., box profile) that is sharply peaked around $x=0$ but still extends over a finite number of grid sites, e.g., 1000 particles in each of the four bins from $x=-2$ to +2 .
(a) Plot time snapshots of the density distribution when significant changes of the latter have occurred, and show that at later times it can be described a one-parameter fit of a normal distribution.
(b) Plot the extracted width, σ, of the distribution as a function of time and compare it to the expected theoretical behavior (plot the latter as a separate line).

