Name:

Homework Assignment \#6

(Due Date: Thursday, March 21, 05:30 pm, in class)
6.1 Ideal Wave Propagation, Stability and Spectral Decomposition (cf. Ex. 6.1, 6.2, 6.4, 6.9) (3+1+2+2 pts.)
Write a FORTRAN program to numerically calculate the signal propagation on a uniform string (length $L=1 \mathrm{~m}$, tension $F_{T}=850 \mathrm{~N}$, total mass 25 g , both ends fixed) using the ideal wave equation,

$$
\begin{equation*}
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}} \tag{1}
\end{equation*}
$$

for the displacement $y(x, t)$ at string position x and time t. Set the numerical coefficient $r \equiv c /(\Delta x / \Delta t)$ equal to one unless otherwise noted.
(a) Impart an initial Gaussian pluck on the string, $y\left(x, t_{0,1}\right)=y_{0} \exp \left[-(x-\bar{x})^{2} / 2 \sigma_{x}^{2}\right]$ with $y_{0}=0.25 m, \bar{x}=0.4 m$ from the left end of the string and a full-width-at-half-maximum of $0.1 m$ (what is the pertinent value of σ_{x} ?). Study the signal propagation by plotting time snapshots of your solution, $y\left(x, t_{s}\right)$, as the signal moves across the string. How are the signals reflected at the ends? Also produce a 3-D "surface" plot for y as a function of x and t (using, e.g., the splot command in gnuplot); the time axis should cover at least 1.2 times the period of the motion.
(b) Study and comment on the consequences of choosing values of $r=0.8,1.2$ in your numerical solution in (a).
(c) Perform a Fourier analysis of the string excitation in part (a), i.e., for a fixed position on the string (e.g. $x_{s}=0.5 m$), record $y(t)$ and evaluate the Fourier transform using a suitable time discretization. Plot the power spectrum vs. frequency and interpret the peaks in the spectrum in terms of the harmonics of the string. Repeat the Fourier analysis for a different position on the string (e.g. $x_{s}=0.7 \mathrm{~m}$) and comment on the difference to $x_{s}=0.5 \mathrm{~m}$.
(d) Initialize the string with a more realistic "triangular" pluck, with a maximum $y\left(0.2, t_{0,1}\right)=0.25 m$, which linearly connects to the ends. Produce a surface plot of $y(x, t)$ as in part (a).
6.2 Stiffness Term in Wave Equation (cf. Ex. 6.15)
(2 pts.)
The wave equation with stiffness correction for a string under tension F_{T} reads

$$
\begin{equation*}
\frac{\partial^{2} y}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} y}{\partial x^{2}}-\frac{Y}{F_{T}} \frac{\partial^{4} y}{\partial x^{4}}\right) \tag{2}
\end{equation*}
$$

with Y : Young's modulus (no numerical work required in this problem).
(a) Derive the symmetric finite difference expression of the 4 . order derivative term suitable for numerical evaluation.
(b) Derive the finite difference expression for $y(i, n+1)$ for the string displacement y at time t_{n+1} and position x_{i} in terms of $y\left(x_{i-2, i-1, i, i+1, i+2}, t_{n, n-1}\right)$.
(c) Discuss qualitatively the effect of a finite stiffness.

