## Homework Assignment \#3

(Due Date: Tuesday, February 12, 05:30 pm, in class)
3.1 Driven Harmonic Motion with Damping
$(2+1+2+1+2+2$ pts. $)$
The motion of the physical pendulum is described by the differential equation

$$
\begin{equation*}
\frac{d^{2} \theta}{d t^{2}}=-\Omega^{2} \sin (\theta)-2 \gamma \frac{d \theta}{d t}+\alpha_{D} \sin \left(\Omega_{D} t\right) \tag{1}
\end{equation*}
$$

where $\Omega^{2}=g / l$. In the following, we will investigate this system at varying levels of approximation (use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}, l=9.8 \mathrm{~m}, \gamma=0.25 \mathrm{~s}^{-1}$ unless otherwise specified).
(a) First consider simple harmonic motion (SHM): $\sin (\theta) \rightarrow \theta, \gamma=0, \alpha_{D}=0$. Write a fortran code to compute $\theta(t)$; use both Euler and Euler-Cromer method, plot and compare your results (choose $\theta_{0}$ as not to violate the linear approximation by more than $2 \%$ ). For both methods, calculate analytically the total energy, $E_{i+1}$, in terms of $E_{i}$. In particular, show that $E_{i+1}=E_{i}+\left(K E_{i}-P E_{i}\right) \Omega^{2}(\Delta t)^{2}-\frac{1}{2} m l^{2} \Omega^{4} \theta_{i}\left(\omega_{i}+\omega_{i+1}\right)(\Delta t)^{3}$ for the Euler-Cromer method and explain why this is an improvement.
(b) Relax the linear approximation and re-calculate and -plot your results for $\theta(t)$. Use $\theta_{0}$ as in part (a), as well as $\pi / 2$ and close to $\pi$. Explain the differences to SHM.
(c) Additionally include damping and a moderate driving force, $\alpha_{D}=0.4 \mathrm{rad} / \mathrm{s}^{2}$, in your FORTRAN code to numerically calculate $\theta(t)$ using the Euler-Cromer method. Plot $\theta(t)$ and $\omega(t)=d \theta / d t$, together with the external driving acceleration, $\alpha_{D}(t)$, over a sufficiently long time to reach the steady-state solution. Then extract the amplitude $\Theta_{0}\left(\Omega_{D}\right)$ and phase shift $\phi\left(\Omega_{D}\right)$ for at least 10 different driving frequencies mapping out the resonance structure, and plot $\Theta_{0}\left(\Omega_{D}\right)^{2}$ and $\phi\left(\Omega_{D}\right)$. Compare these results to the analytical curves for the linear driven HM and comment on the difference, if any.
(d) For a driving frequency close to resonance, compute potential, kinetic and total energies, and plot them in the same graph over ca. 10 periods.
(e) For $\alpha_{D}=0.4 \mathrm{rad} / \mathrm{s}^{2}$ and $1.2 \mathrm{rad} / \mathrm{s}^{2}$, compute $|\Delta \theta(t)|$ for several pairs of trajectories with slightly different initial angle ( $\Delta \theta_{\text {in }}=0.001$ rad or so). Plot the results and estimate the (largest) Lyapunov exponent $\lambda$ for each $\alpha_{D}$.
(f) Generate the bifurcation diagram of the pendulum by taking snapshots of the amplitude (in the steady-state regime) at integer multiples of the driving period, and plotting all values for $\theta\left(n T_{D}\right)$ for each $\alpha_{D}$, as a function of $\alpha_{D}$. Start with $\alpha_{D}=1.4 \mathrm{rad} / \mathrm{s}^{2}$ and move forward in small steps (e.g., 0.001 to begin with) to track the period doublings for at least 4 times. Estimate the Feigenbaum number.

