Homework Assignment #3

(Due Date: Tuesday, February 12, 05:30 pm, in class)

3.1 Driven Harmonic Motion with Damping (2+1+2+1+2+2 pts.)The motion of the physical pendulum is described by the differential equation

$$\frac{d^2\theta}{dt^2} = -\Omega^2 \sin(\theta) - 2\gamma \frac{d\theta}{dt} + \alpha_D \sin(\Omega_D t) .$$
(1)

where $\Omega^2 = g/l$. In the following, we will investigate this system at varying levels of approximation (use $g=9.8 m/s^2$, l=9.8 m, $\gamma=0.25 s^{-1}$ unless otherwise specified).

- (a) First consider simple harmonic motion (SHM): $\sin(\theta) \to \theta, \gamma=0, \alpha_D=0$. Write a fortran code to compute $\theta(t)$; use both Euler and Euler-Cromer method, plot and compare your results (choose θ_0 as not to violate the linear approximation by more than 2%). For both methods, calculate analytically the total energy, E_{i+1} , in terms of E_i . In particular, show that $E_{i+1} = E_i + (KE_i - PE_i)\Omega^2(\Delta t)^2 - \frac{1}{2}ml^2\Omega^4\theta_i(\omega_i + \omega_{i+1})(\Delta t)^3$ for the Euler-Cromer method and explain why this is an improvement.
- (b) Relax the linear approximation and re-calculate and -plot your results for $\theta(t)$. Use θ_0 as in part (a), as well as $\pi/2$ and close to π . Explain the differences to SHM.
- (c) Additionally include damping and a moderate driving force, $\alpha_D = 0.4rad/s^2$, in your FORTRAN code to numerically calculate $\theta(t)$ using the Euler-Cromer method. Plot $\theta(t)$ and $\omega(t) = d\theta/dt$, together with the external driving acceleration, $\alpha_D(t)$, over a sufficiently long time to reach the steady-state solution. Then extract the amplitude $\Theta_0(\Omega_D)$ and phase shift $\phi(\Omega_D)$ for at least 10 different driving frequencies mapping out the resonance structure, and plot $\Theta_0(\Omega_D)^2$ and $\phi(\Omega_D)$. Compare these results to the analytical curves for the linear driven HM and comment on the difference, if any.
- (d) For a driving frequency close to resonance, compute potential, kinetic and total energies, and plot them in the same graph over ca. 10 periods.
- (e) For $\alpha_D = 0.4 rad/s^2$ and $1.2 rad/s^2$, compute $|\Delta \theta(t)|$ for several pairs of trajectories with slightly different initial angle ($\Delta \theta_{\rm in} = 0.001 rad$ or so). Plot the results and estimate the (largest) Lyapunov exponent λ for each α_D .
- (f) Generate the bifurcation diagram of the pendulum by taking snapshots of the amplitude (in the steady-state regime) at integer multiples of the driving period, and plotting all values for $\theta(nT_D)$ for each α_D , as a function of α_D . Start with $\alpha_D = 1.4 \, rad/s^2$ and move forward in small steps (e.g., 0.001 to begin with) to track the period doublings for at least 4 times. Estimate the Feigenbaum number.