
Name: PHY401 (Spring 2013), 02/05/13

Homework Assignment #3

(Due Date: Tuesday, February 12, 05:30 pm, in class)

3.1 Driven Harmonic Motion with Damping (2+1+2+1+2+2 pts.)
The motion of the physical pendulum is described by the differential equation

d2θ

dt2
= −Ω2 sin(θ) − 2γ

dθ

dt
+ αD sin(ΩDt) . (1)

where Ω2 = g/l. In the following, we will investigate this system at varying levels
of approximation (use g=9.8m/s2, l=9.8m, γ=0.25 s−1 unless otherwise specified).

(a) First consider simple harmonic motion (SHM): sin(θ) → θ, γ=0, αD=0. Write
a fortran code to compute θ(t); use both Euler and Euler-Cromer method, plot
and compare your results (choose θ0 as not to violate the linear approximation
by more than 2%). For both methods, calculate analytically the total energy,
Ei+1, in terms of Ei. In particular, show that
Ei+1 = Ei + (KEi − PEi)Ω
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for the Euler-Cromer method and explain why this is an improvement.

(b) Relax the linear approximation and re-calculate and -plot your results for θ(t).
Use θ0 as in part (a), as well as π/2 and close to π. Explain the differences to
SHM.

(c) Additionally include damping and a moderate driving force, αD = 0.4rad/s2,
in your FORTRAN code to numerically calculate θ(t) using the Euler-Cromer
method. Plot θ(t) and ω(t) = dθ/dt, together with the external driving accel-
eration, αD(t), over a sufficiently long time to reach the steady-state solution.
Then extract the amplitude Θ0(ΩD) and phase shift φ(ΩD) for at least 10 differ-
ent driving frequencies mapping out the resonance structure, and plot Θ0(ΩD)2

and φ(ΩD). Compare these results to the analytical curves for the linear driven
HM and comment on the difference, if any.

(d) For a driving frequency close to resonance, compute potential, kinetic and total
energies, and plot them in the same graph over ca. 10 periods.

(e) For αD=0.4rad/s2 and 1.2rad/s2, compute |∆θ(t)| for several pairs of trajec-
tories with slightly different initial angle (∆θin = 0.001 rad or so). Plot the
results and estimate the (largest) Lyapunov exponent λ for each αD.

(f) Generate the bifurcation diagram of the pendulum by taking snapshots of
the amplitude (in the steady-state regime) at integer multiples of the driving
period, and plotting all values for θ(nTD) for each αD, as a function of αD. Start
with αD=1.4 rad/s2 and move forward in small steps (e.g., 0.001 to begin with)
to track the period doublings for at least 4 times. Estimate the Feigenbaum
number.


