Homework Assignment \#2

(Due Date: Thursday, January 31, 05:30 pm, in class)
2.1 Medieval Castle Defense
($2+3+3+2$ pts. $)$
A castle is built on the hills of a river valley, $h=60 \mathrm{~m}$ above the river/valley level. The castle's horizontal distance (from the bottom of the hill) to the nearside river bank is 180 m , and the river is another 55 m wide. The castle is equipped with several cannons which can eject solid smooth rock spheres of 25 cm diameter at a speed of $v_{0}=45 \mathrm{~m} / \mathrm{s}$ (the rock's mass density is $2800 \mathrm{~kg} / \mathrm{m}^{3}$). The castle knights are about to fire the cannons in view of 500 enemy troops approaching the far-side river bank, but they have to figure out the appropriate launch angle, Θ_{0}. To save precious gunpowder, the court jester suggests to perform some estimates prior to the first shot.
(a) Analytical (benchmark) estimates: Neglecting air drag, derive the analytical expression for the horizontal range of the projectile as a function of Θ_{0}, v_{0}, h and $g\left(=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$. Use your pocket calculator to obtain the projectile range, $R\left(\Theta_{0}\right)=x_{\max }\left(\Theta_{0}\right)$, for a few launch angles between 30° and 45° to roughly estimate the maximal theoretical range, $R_{\max }=R\left(\Theta_{0}^{\max }\right)$, in vacuum. Sketch the trajectories in a hand-drawn graph (no need for accuracy except for Θ_{0} and R).
(b) Write a FORTRAN code to compute the trajectory including a quadratic (in speed) air drag with a drag coefficient of 0.5 for the cannon ball (air density $\rho_{\text {air }}=1.29 \mathrm{~kg} / \mathrm{m}^{3}$). Can the cannon ball reach the far-side river shore? Attach the source code and a plot of trajectories including the one with the maximal range, $R_{\text {max }}$. Compute and plot the cannon ball's speed upon impact, as function of Θ_{0}.
(c) How accurate does the launch angle have to be to hit a target of $2 m$ horizontal size (neglect vertical size) which has just moved fully into the maximal range (i.e., its center is at $R_{\max }-1 m$)? How large is the angular variation to hit the target when it has moved to 50% of the maximal range (evaluate both solutions, i.e., below and above $\left.\Theta_{0}^{\max }\right)$? Use a linear interpolation technique in determining all impact locations.
(d) Suddenly a horizontal head wind of 20 mph starts to blow, bringing also heavy rain fall; repeat part (b) for these conditions (approximate the effect of the rain drops by a 10% increase of the air density).

