Homework Assignment \#8

(Due Date: Monday, April 19, 10:20 am, in class)
8.1 Diffusion Equation (cf. Exercise 7.9 in the textbook)

$$
(1+3 \text { pts.) }
$$

(a) Show analytically that the spatial expectation value, $\left\langle x(t)^{2}\right\rangle$, of the 1D Normal Distribution,

$$
\begin{equation*}
\rho(x, t)=\frac{1}{\sqrt{2 \pi \sigma(t)}} \exp \left[-\frac{x^{2}}{2 \sigma(t)^{2}}\right] \tag{1}
\end{equation*}
$$

equals $\sigma(t)^{2}$.
(b) Write a FORTRAN program to solve the 1D diffusion equation using the finite difference form with diffusion constant $D=2$. Start from an initial density profile that is sharply peaked around $x=0$ but extends over a few grid sites (box profile). Verify (using a fit) that at later times the numerically calculated density profile corresponds to a Normal Distribution with $\sigma=\sqrt{2 D t}$ (i.e., perform a fit for 5 different time snapshots over which significant changes of the distribution are visible).
8.2 Diffusion and Entropy (cf. Exercise 7.12 in the textbook)
(3+3 pts.)

Consider a 2D distribution of 1000 test particles (e.g., a drop immersed in a liquid) which are initially localized uniformly within a 10×10 square in the center of a 300×300 boundary (similar to Section 7.5 in the textbook).
(a) Write a FORTRAN code to simulate the diffusion process of this "drop" by randomly choosing one particle per time step and moving it randomly by one unit in either $\pm x$ or $\pm y$ direction. Display time snapshots of the particle distribution when noticeable changes are visible.
(b) Calculate and plot the time evolution of the entropy per particle by evaluating

$$
\begin{equation*}
S_{1}=-\sum_{i} P_{i} \ln P_{i} \tag{2}
\end{equation*}
$$

using all 1000 particles to determine the probability P_{i} for finding one particle within a cell of a 12×12 partition of the entire grid. Calculate analytically the initial and asymptotic values of the entropy per particle ($S_{1}(t=0)$ and $S_{1}(t \rightarrow \infty)$, respectively) to check your numerical results.

