Name:

Homework Assignment #7

(Due Date: Friday, April 09, 10:20 am, in class)

- 7.1 2D Random Walk (cf. Exercise 7.2 in the textbook) (2+2 pts.)Write a FORTRAN program to simulate a random walker in 2 dimensions, taking steps of unit length in $\pm x$ or $\pm y$ direction on a discrete square lattice.
 - (a) Plot $\langle x_n \rangle$ and $\langle (x_n)^2 \rangle$ up to n=100 by averaging over at least $n_w=10^4$ different walks for each n > 3.
 - (b) Show that the motion is diffusive, $\langle r^2 \rangle \propto t$, and determine the value of the diffusion constant (an "eyeball" fit to your numerical data is ok).
- 7.2 2D Self-Avoiding Walk (cf. Ex. 7.5 in the textbook) (2+2+2 pts.)Write a FORTRAN program to simulate 2D self-avoiding walks (SAWs) using the "trial" method discussed in class. Make sure that each walk of given step-length n (polymer with given molecule number, n) has the same probability i.e., each step direction should always be selected with probability 1/3 (except for the first step).
 - (a) Defining C_n as the total number of distinct SAWs for n steps, the probability for a single SAW simulation surviving after n steps is given by

$$P(n) = \frac{C_n}{3^n} \tag{1}$$

which quantifies the numerical attrition in simulating SAWs. Compute (and plot) P(n) up to n=50 by conducting $\sim 10^6$ trials for each n. Comment on a comparison to the exact results quoted in Table 7.1 of the textbook.

(b) Suppose the large-*n* behavior of C_n is parameterized by

$$C_n \simeq C_0 \ \mu^n \ n^{\gamma - 1} \tag{2}$$

with parameters $\mu < 3$ (why?) and γ . Show analytically that

$$\frac{P(n+1)}{P(n)} \simeq \frac{\mu}{3} (1 + \frac{\gamma - 1}{n})$$
(3)

and plot this relation for your data as a function of 1/n to estimate μ and γ .

(c) To investigate the diffusive properties of the 2D SAW show analytically that

$$\frac{\langle r_{n+1}^2 \rangle}{\langle r_n^2 \rangle} = 1 + 2\nu \frac{1}{n} \tag{4}$$

for large n using the definition of the Flory exponent, ν ,

$$\sqrt{\langle r^2(t) \rangle} \equiv A t^{\nu} , t \text{ large.}$$
 (5)

Use the relation (4) to plot your 2D SAW data and determine the value of the Flory exponent.