Name:

Homework Assignment \#7

(Due Date: Friday, April 09, 10:20 am, in class)
7.1 2D Random Walk (cf. Exercise 7.2 in the textbook)

$$
(2+2 \text { pts. })
$$

Write a FORTRAN program to simulate a random walker in 2 dimensions, taking steps of unit length in $\pm x$ or $\pm y$ direction on a discrete square lattice.
(a) Plot $\left\langle x_{n}\right\rangle$ and $\left\langle\left(x_{n}\right)^{2}\right\rangle$ up to $n=100$ by averaging over at least $n_{w}=10^{4}$ different walks for each $n>3$.
(b) Show that the motion is diffusive, $\left\langle r^{2}\right\rangle \propto t$, and determine the value of the diffusion constant (an "eyeball" fit to your numerical data is ok).
7.2 2D Self-Avoiding Walk (cf. Ex. 7.5 in the textbook)

$$
(2+2+2 p t s .)
$$ Write a FORTRAN program to simulate 2D self-avoiding walks (SAWs) using the "trial" method discussed in class. Make sure that each walk of given step-length n (polymer with given molecule number, n) has the same probability i.e., each step direction should always be selected with probability $1 / 3$ (except for the first step).

(a) Defining C_{n} as the total number of distinct SAWs for n steps, the probability for a single SAW simulation surviving after n steps is given by

$$
\begin{equation*}
P(n)=\frac{C_{n}}{3^{n}} \tag{1}
\end{equation*}
$$

which quantifies the numerical attrition in simulating SAWs. Compute (and plot) $P(n)$ up to $n=50$ by conducting $\sim 10^{6}$ trials for each n. Comment on a comparison to the exact results quoted in Table 7.1 of the textbook.
(b) Suppose the large- n behavior of C_{n} is parameterized by

$$
\begin{equation*}
C_{n} \simeq C_{0} \mu^{n} n^{\gamma-1} \tag{2}
\end{equation*}
$$

with parameters $\mu<3$ (why?) and γ. Show analytically that

$$
\begin{equation*}
\frac{P(n+1)}{P(n)} \simeq \frac{\mu}{3}\left(1+\frac{\gamma-1}{n}\right) \tag{3}
\end{equation*}
$$

and plot this relation for your data as a function of $1 / n$ to estimate μ and γ.
(c) To investigate the diffusive properties of the 2D SAW show analytically that

$$
\begin{equation*}
\frac{\left\langle r_{n+1}^{2}\right\rangle}{\left\langle r_{n}^{2}\right\rangle}=1+2 \nu \frac{1}{n} \tag{4}
\end{equation*}
$$

for large n using the definition of the Flory exponent, ν,

$$
\begin{equation*}
\sqrt{\left\langle r^{2}(t)\right\rangle} \equiv A t^{\nu}, t \text { large. } \tag{5}
\end{equation*}
$$

Use the relation (4) to plot your 2D SAW data and determine the value of the Flory exponent.

