Name:

Homework Assignment #3

(Due Date: Wednesday, February 17, 10:20 am, in class)

3.1 Driven Harmonic Motion with Damping (cf. Ex. 3.7 in the textbook) (1+2+2+1 pts.)Consider the linear, damped, driven pendulum, defined by the differential equation

$$\frac{d^2\theta}{dt^2} = -\frac{g}{l}\theta - 2\gamma \frac{d\theta}{dt} + \alpha_D \sin(\Omega_D t) .$$
(1)

(use $g=9.8 m/s^2$, l=9.8 m, $\gamma=0.25 s^{-1}$).

- (a) Calculate analytically at what (approximate) value of Ω_D the resonance occurs. Do you expect the small-angle (linear) approximation to be good?
- (b) Write a FORTRAN program to numerically calculate $\theta(t)$ using the Euler-Cromer Method. Plot $\theta(t)$ and $\omega(t) = d\theta/dt$, as well as the external driving acceleration, $\alpha_D(t)$, over a sufficiently long time to reach the steady-state solution. From the latter, extract the amplitude $\Theta_0(\Omega_D)$ and phase shift $\phi(\Omega_D)$ for at least 10 different driving frequencies mapping out the resonance structure, and plot $\Theta_0(\Omega_D)^2$ and $\phi(\Omega_D)$. Numerically extract the full-width at half maximum (FWHM) of the resonance curve and compare it to γ .
- (c) For a driving frequency close to resonance, compute potential, kinetic and total energies, and plot them in the same graph over ca. 10 periods.
- (d) Switch on nonlinear effects by replacing θ with $\sin \theta$ in the restoring force and plot+compare to your previous results for $\theta(t)$ and $\omega(t)$ using Ω_D close to resonance.
- 3.2 Driven Pendulum and Transition/Approach to Chaos (cf. Ex. 3.18 in the textbook) (2+2 pts.)

Consider the damped, driven, nonlinear pendulum of part (d) above for fixed $\Omega_D = \frac{2}{3}s^{-1}$ but now varying the driving acceleration (force) α_D .

- (a) Compute $|\Delta\theta(t)|$ for several trajectories with slightly different initial angle $(\Delta\theta_{\rm in} = 0.001 \, rad \, {\rm or \, so})$ using $\alpha_D = 1.2 \, rad/s^2$. Plot the results and estimate the Lyapunov exponent λ of the system.
- (b) Extend your code to compute (and then plot) the Poincaré sections of the motion for $\alpha_D=1.4$, 1.44, 1.465, 1.48 and 1.485 rad/s^2 .