Homework Assignment \#3

(Due Date: Wednesday, February 17, 10:20 am, in class)
3.1 Driven Harmonic Motion with Damping (cf. Ex. 3.7 in the textbook) (1+2+2+1 pts.) Consider the linear, damped, driven pendulum, defined by the differential equation

$$
\begin{equation*}
\frac{d^{2} \theta}{d t^{2}}=-\frac{g}{l} \theta-2 \gamma \frac{d \theta}{d t}+\alpha_{D} \sin \left(\Omega_{D} t\right) \tag{1}
\end{equation*}
$$

(use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}, l=9.8 \mathrm{~m}, \gamma=0.25 \mathrm{~s}^{-1}$).
(a) Calculate analytically at what (approximate) value of Ω_{D} the resonance occurs. Do you expect the small-angle (linear) approximation to be good?
(b) Write a FORTRAN program to numerically calculate $\theta(t)$ using the EulerCromer Method. Plot $\theta(t)$ and $\omega(t)=d \theta / d t$, as well as the external driving acceleration, $\alpha_{D}(t)$, over a sufficiently long time to reach the steady-state solution. From the latter, extract the amplitude $\Theta_{0}\left(\Omega_{D}\right)$ and phase shift $\phi\left(\Omega_{D}\right)$ for at least 10 different driving frequencies mapping out the resonance structure, and plot $\Theta_{0}\left(\Omega_{D}\right)^{2}$ and $\phi\left(\Omega_{D}\right)$. Numerically extract the full-width at half maximum (FWHM) of the resonance curve and compare it to γ.
(c) For a driving frequency close to resonance, compute potential, kinetic and total energies, and plot them in the same graph over ca. 10 periods.
(d) Switch on nonlinear effects by replacing θ with $\sin \theta$ in the restoring force and plot+compare to your previous results for $\theta(t)$ and $\omega(t)$ using Ω_{D} close to resonance.
3.2 Driven Pendulum and Transition/Approach to Chaos (cf. Ex. 3.18 in the textbook) (2+2 pts.)
Consider the damped, driven, nonlinear pendulum of part (d) above for fixed $\Omega_{D}=\frac{2}{3} s^{-1}$ but now varying the driving acceleration (force) α_{D}.
(a) Compute $|\Delta \theta(t)|$ for several trajectories with slightly different initial angle $\left(\Delta \theta_{\text {in }}=0.001 \mathrm{rad}\right.$ or so) using $\alpha_{D}=1.2 \mathrm{rad} / \mathrm{s}^{2}$. Plot the results and estimate the Lyapunov exponent λ of the system.
(b) Extend your code to compute (and then plot) the Poincare sections of the motion for $\alpha_{D}=1.4,1.44,1.465,1.48$ and $1.485 \mathrm{rad} / \mathrm{s}^{2}$.

