Homework Assignment #1

(Due Date: Wednesday, January 27, 10:20 am, in class)

1.1 Carbon Dating

 $(1+6+3 \ pts.)$

The ${}_{6}^{14}C$ isotope is widely used for dating of ancient (organic-based) artifacts. It undergoes β^{-} decay with a half-life of $T_{1/2} = 5700$ years. Suppose an ancient artifact originally contained $10^{-12} kg$ of ${}_{6}^{14}C$ (recall that $1 \mod$ of a substance, which has a mass corresponding to the atomic mass-number in grams, contains $N_{A}=6.022 \cdot 10^{23}$ particles).

- (a) Derive analytically the relation between half-life, $T_{1/2}$, and lifetime, $\tau \equiv 1/\Gamma$, as defined in class.
- (b) Write a FORTRAN code to numerically calculate the activity of the sample, defined as R(t) = -dN/dt, over a duration of 20000 years. Use a numerical time-step width of 100 years. Plot the result in appropriate units using GNU-PLOT together with the exact (analytical) solution in the same graph. Attach both the plot and your fortran source code.
- (c) Increase the time-step width to 1000 *years* and replot. Is the accuracy of the numerical solution still acceptable? (e.g., what is the percentage deviation from the exact result after 2 half-lifes?). Is the deviation from the exact result as large as you would expect from the neglected second-order term?