Homework Assignment \#8

(Due Date: Wednesday, November 22, 12:40 pm, in class)
8.1 2-D Ising Model (cf. Exercises 8.1, 8.2, 8.3 and 8.8 in the textbook) ($3+5+4+3$ pts.) Consider the 2-D Ising Model with nearest-neighbor interaction strength $J=2$ and at zero external magnetic field (except for part (d)).
(a) Use the Newton-Raphson root finder algorithm to numerically solve the meanfield selfconsistency relation for the average magnetization,

$$
\begin{equation*}
\langle s\rangle=\tanh \left(\frac{z J}{k_{B} T}\langle s\rangle\right), \tag{1}
\end{equation*}
$$

in the temperature range from zero to just above T_{c}. Compare your numerical results at large and small(!) temperature to analytic results obtained from a suitable Taylor expansion.
(b) Write a FORTRAN program to numerically study the 2-D Ising Model on a $n \times n$ lattice with periodic boundary conditions (N : total number of spins, $M=$ $N\langle s\rangle$). Calculate the magnetization as a function of temperature (allowing for enough Monte Carlo sweeps to reach equilibrium) and determine the critical temperature as well as the critical exponent β in $M \propto\left(T_{c}-T\right)^{\beta}$.
(Hints: to extract β, concentrate on the temperature region $T=(0.9-1) T_{c}$. For several values of T, plot $\log (M)$ vs. $\log \left(T_{c}-T\right)$ and take as a best estimate the case where a straight line appears most appropriate; perform this procedure for two lattice sizes, $n=15$ and 25 , to check for finite-size effects.)
(c) Calculate the specific heat per spin, C / N, for 5 different lattice sizes between $n=5$ and 40, using the fluctuation-dissipation theorem, $C=(\Delta E)^{2} /\left(k_{B} T^{2}\right)$, and verify the approximate "finite-size scaling" relation $C_{\max } / N \propto \log (n)$.
(Hint: make sure to use sufficient temperature resolution when determining the maximum in C / N as you increase n.)
(d) Introduce an external magnetic field, H, into your code and calculate (and plot) the dependence of the magnetization on H for a fixed temperature, $T=T_{c} / 4$. Use fine enough steps in H to convince yourself that the transition in $M(H)$ is of first order. Verify the hysteresis effect by varying H across the transition both from negative to positive and from positive to negative.

