Homework Assignment \#6

(Due Date: Wednesday, November 02, 12:40 pm, in class)
6.1 3-D Random Walk (cf. Exercise 7.2 in the textbook)
(3 pts.)
Write a FORTRAN program to simulate a random walker in 3 dimensions, taking steps of unit length but of arbitrary direction (i.e., do not restrict the walker to discrete lattice sites). Show that the motion is diffusive with $\left\langle r^{2}\right\rangle \propto t$ and determine the value of the proportionality constant.
6.2 Diffusion Equation (cf. Exercise 7.9 in the textbook)
(3 pts.)
Write a FORTRAN program to solve the 1-D diffusion equation using the finite difference form with diffusion constant $D=2$. Start from an initial density profile (e.g., box profile) that is sharply peaked around $x=0$ but extends over at least several grid sites. Show that at later times the numerically calculated density profile corresponds to a normal distribution with $\sigma=\sqrt{2 D t}$.
6.3 Diffusion and Entropy (cf. Exercise 7.12 in the textbook) (4 pts.) Consider a 2-dimensional distribution of 400 test particles (immersed in a liquid, e.g.) which are initially localized uniformly within a 10×10 square in the center of a 200×200 boundary (as in Section 7.5 of the textbook). Simulate its diffusion process by randomly choosing one particle per time step and moving it randomly one unit in $\pm x$ or $\pm y$ direction. Calculate the time evolution of the single-particle entropy by evaluating (and plotting)

$$
\begin{equation*}
S_{1}=-\sum_{i} P_{i} \ln P_{i} \tag{1}
\end{equation*}
$$

using all 400 particles to determine the probability P_{i} for finding one particle within a site of a 8×8 partition of the entire square, at each time step. Confirm, in particular, the asymptotic (equilibrium) value of $S_{1}(t \rightarrow \infty) \sim 4.2$.

