Homework Assignment \#2

(Due Date: Monday, September 19, 12:40 pm, in class)
2.1 Baseball Trajectory (cf. Exercise 2.13 in the textbook)

Construct a FORTRAN program to calculate the 2-D trajectory of a baseball (mass 0.2 kg , radius 5 cm) including a drag force (but without spinning) on sea level with drag coefficient $C=0.5$ and initial speed $v_{0}=110 \mathrm{mph}$.
(a) Calculate and plot the trajectories and ranges (using a linear interpolation) in still air for various launch angles Θ_{0} in steps of 1° and determine the launch angle that gives the maximum range.
(b) Repeat part (a) (using $\Theta_{0}=40^{\circ}$ only) for a head wind of 25 mph , and for a tail wind of 25 mph .
(c) Implement a speed-dependent drag coefficient,

$$
\begin{equation*}
C(v)=0.1+\frac{0.4}{1+\exp \left[\left(v-v_{d}\right) / \Delta\right]} \tag{1}
\end{equation*}
$$

with $v_{d}=160 \mathrm{mph}$ and $\Delta=10 \mathrm{mph}$, and calculate the trajectories for fixed launch angle, $\Theta_{0}=40^{\circ}$, for $v_{0}=160$ and 210 mph , and compare to results for constant $C=0.5$.
2.2 Table Tennis Ball with Spin (cf. Exercise 2.24 in the textbook)
(3 pts.)
Modify your code of the previous problem (but save it under a new name!) to describe the trajectory of a horizontally launched (smooth) table tennis ball (radius 1.9 cm , mass 3 g , initial height $=1.5 \mathrm{~m}$) with initial speed $v_{0}=3 \mathrm{~m} / \mathrm{s}$. Include both a drag force and a Magnus force, $\vec{F}_{M}=S_{0} \vec{\omega} \times \vec{v}$, with the axis of rotation out of the vertical plane of motion, $S_{0} / m=0.04$ (SI units) and $\omega= \pm 2 \pi \cdot 10 \mathrm{rad} / \mathrm{s}$. Calculate and plot the trajectories for all three cases (no spin, "topspin" and "slice").

