
FINAL EXAM

PHYS 625 (Spring 2011), 05/09/11

Name:

Signature:

Duration: 120 minutes
Show all your work for full/partial credit

Quote your answers in units of MeV (or GeV) and fm, or combinations thereof

No. Points

1

2

3

4

5

Sum



1.) Central NN Potential from Meson Exchange (8+8+4+4 pts.)
In momentum space, the meson-exchange model for the nucleon-nucleon interaction is given by
meson propagators and coupling constants as

Vα(q) = ±g2

α
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, (1)

where spin-isospin factors have been suppressed.

(a) Calculate the meson exchange potential in coordinate space using a Fourier transform.

(b) In the following, consider the contributions from (attractive) sigma and (repulsive) omega
exchange with gσ=10.5, mσ=550MeV and gω=14.2, mω=782MeV. Calculate the values of
Vα(r) for both contributions, as well as for the total, at distances r=0.5, 1, and 1.5 fm.

(c) Sketch in a graph V (r) = Vσ(r) + Vω(r).

(d) The many body-theory using non-relativistic nucleon-nucleon potentials is referred to as
Brueckner-Bethe-Goldstone (BBG) theory. Explain at least one success and one drawback
of this approach.



2.) Relativistic Mean-Field Model for Nuclear Matter (10+8+4 pts.)
In mean-field theory, the energy density of nuclear matter in the relativistic σ-ω model at zero
temperature has been found to be
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with nucleon density %N=2k3
F/(3π2), spin-isospin degeneracy dSI=4, in-medium nucleon mass

m∗
N=mN−gσφ0 and in-medium nucleon energy E∗
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(a) Using ∂ε/∂%N = (P + ε)/%N show that the pressure can be written as
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Also use d%N = (2/π2)k2
FdkF and a partial integration.

(b) Using a minimization condition of the energy, E = εV , at fixed %N (i.e., fixed A and V ),
show that the scalar mean field is given by

φ0 =
gσ

m2
σ

%s with %s = dSI

kF∫

0

d3k

(2π)3

m∗
N

E∗
k

. (4)

(c) Rewrite the pressure in terms of %s and argue why nuclear saturation in the RMF σ-ω model
is a relativistic effect.



3.) Constituent Quark Model (10+6+4 pts.)
In the constituent-quark model the spin-flavor wave function of a proton with spin up is given by

|p↑〉 =
1√
18

[uud(↑↓↑ + ↓↑↑ −2 ↑↑↓) + udu(↑↑↓ + ↓↑↑ −2 ↑↓↑) + duu(↑↓↑ + ↑↑↓ −2 ↓↑↑)] , (5)

with notation uud(↑↓↑) ≡ u↑u↓d↑, and so on.

(a) Calculate the magnetic moment, µp = 〈p↑|µ̂h|p↑〉, of the proton using the hadronic operator

µ̂h =
∑

i

µi σi
z , µi =

ei

2mi
. (6)

The sum is over the quark constituents in the hadron and σi
z = diag(1,−1) is the quark-spin

Pauli matrix with eigenvalues ±1 for spin-up/-down. Calculate and express your result in
terms of the up- and down-quark magnetic moments, µu,d =

eu,d

2mu,d
(not in units of 1/GeV).

(b) Isospin symmetry implies the neutron wave function to result from the one of the proton
via the exchange u ↔ d and mu = md. Use your result from (a) to immediately obtain the
neutron magnetic moment, µn, in terms of µu and µd. Then use eu=2/3 and ed=−1/3 to
calculate the ratio µn/µp and compare it to the experimental value of −0.685.

(c) What is the overall symmetry of the proton wave function under exchange of any two quarks?
Is that a problem, and if so, how is it resolved?



4.) QCD Vacuum (6+10 pts.)
When treating the effective quark Lagrangian of the Nambu-Jona-Lasinio (NJL) model in mean-
field approximation one obtains the (non-regularized) free energy as
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where m∗
q = mq − 2Gχ0 and mq are the effective and bare quark mass, respectively, χ0 is the

quark-antiquark condensate, dSCF the spin-color-flavor degeneracy of the light quarks, Λ a sharp
3-momentum cutoff and ω∗

p = (p2 + m∗
q)

1/2 the quark energy. Assume 2 light flavors with mq=0.

(a) Calculate the effective quark mass (in MeV) for a coupling constant G = 0.3 fm2 and a quark
condensate of χ0 = −4 fm−3.

(b) Calculate the (regularized) nonperturbative vacuum pressure, P = −Ω̄ (in GeV/fm−3),
assuming Λ=0.6GeV. Make sure to subtract the contribution for vanishing effective quark
mass, Ω0, i.e., in the absence of any condensate.



5.) QCD Phase Diagram (18 pts.)
Assume the pressure and energy density of the nonperturbative QCD vacuum to be given by
P = −ε = 0.3GeV/fm3.

(a) Calculate the minimum temperature for a non-interacting massless 2-flavor quark-gluon
plasma (QGP) at vanishing chemical potential (µq = 0, i.e., equal number of quarks and
antiquarks) to overcome the vacuum pressure. What is the energy density (in GeV/fm3)
of the QGP at this temperature? Make sure to include the appropriate spin-color-flavor-
antiparticle degeneracy for quarks and gluons. (Use the Boltzmann approximation in this
part).

(b) Repeat part (a) for a non-intertacting quark gas at zero temperature to calculate the mini-
mum chemical potential and pertinent energy density.



Formula Sheet

Fourier Transform and Residue Theorem:

f(~r) =
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Partial Integration:

∫
uv′ = uv −

∫
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Pressure and energy density of ideal gas:
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∫
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with f = 1/(exp[(Ek − µ)/T ] ± 1) Fermi/Bose, or f = exp[−(Ek − µ)/T ] Boltzmann

Indefinite integral with X = x2 + a2:

∫
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Conversion factor: h̄c = 197 MeV fm = 0.197 GeV fm


