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1.) Conceptual Questions (no calculations required) (8+7 pts.)

(A) The central nucleon-nucleon potential, V cent
12 (r), is characterized by long-range attraction

and a short-range repulsive core. When using the non-interacting Fermi-gas result for the
nuclear wave function, ΨA, what problem arises in calculating the expectation value of
the two-body potential contribution to the binding energy, 〈ΨA|V (r)|ΨA〉 ?
How is that problem solved in Brueckner-Bethe-Goldstone theory?

(B) Sketch the coordinate-space potential between a heavy quark and antiquark, VQQ̄(r),
and give an approximate functional form. Briefly discuss the nature of the two main
ingredients to this potential.



2.) Empirical Nuclear Matter (18 pts.)
Infinite nuclear matter is characterized by a saturation density of %0 = 0.16 fm−3 and a binding
energy per nucleon of EB/A = −16MeV.

(a) Calculate the Fermi momentum of nuclear matter [in MeV] by simply integrating up
the nucleon momentum phase space at %0. Account for the spin-isospin degeneracy of
nucleons.

(b) Calculate the non-relativistic nucleon Fermi energy, εF = ε(kF ), and the average kinetic
energy, 〈εN〉, of nucleons at %0 = 0.16 fm−3. Quote both quantities in MeV.

(c) Using the kinetic energies of part (b), what average potential energy per nucleon, 〈U〉, is
required to obtain the empirical binding energy?



3.) Nuclear Shell Model (18 pts.)
Consider nucleons moving in a collectively generated 3-D central harmonic oscillator potential,

Uc(r) = −U0 +
1

2
MNω

2r2 (1)

with U0 = 50MeV and oscillator strength ω ' 15 MeV for A'60. Its energy eigenvalues are

EN = (N +
3

2
)h̄ω − U0 (2)

with N = 2(n− 1) + l, where l ≥ 0 is the angular momentum quantum number and n ≥ 1.

(a) Determine the proton shell fillings for N=0,1,2,3 and the corresponding (cumulative)
“magic numbers” for shell closures.

(b) Now include a spin-orbit term in the potential: U(r) = Uc(r)− 2α~L · ~S with α ' 1 MeV.

Express the spin-orbit operator in terms of the eigenvalues j, l and s of ~J2, ~L2 and ~S2.
(hint: ~J = ~L + ~S).

(c) Evaluate ~L · ~S for the two possibilities j = l ± 1
2

and indicate how this can explain the
experimentally observed magic numbers 2, 8, 20, 28.



4.) Relativistic Mean-Field Model for Nuclear Matter (6+7+2 pts.)
The Lagrangian for the relativistic σ-ω model is given by

L =
1

2
(∂µφ)2 − 1

2
m2

σφ
2 − 1

4
(Vµν)

2 +
1

2
m2

ωV
2
µ + ψ̄ [i/∂ −mN − gω/V + gσφ] ψ . (3)

(a) Calculate the equation of motion for the scalar field.

(b) Apply the mean-field approximation for the meson fields, 〈φ〉 ≡ φ0, 〈Vν〉 ≡ δν0Vν, and
write down the Lagrangian in this approximation. Establish the relation between the
scalar mean field and the scalar nucleon density, and identify an “in-medium” nucleon
mass in terms of the scalar mean field.

(c) What is the physical effect of the vector mean-field on the nucleon energy?



5.) Isospin Invariance of πN Lagrangian (16 pts.)
A simple π-N -N interaction Lagrangian is given by

LπNN = gπNN ψ̄N iγ5 ~π · ~τ ψN , (4)

where arrows indicate vectors in isospin space (the nucleon spinors are doublets in this space).

(a) Show that the above Lagrangian is invariant under rotations in isospin space by applying
an infinitesimal rotation to all field operators about an angle α� 1,
ψN → (1 − i~α · ~τ/2)ψN , π → (1 + ~α ×) ~π ,
and verifying the invariance to leading order in α.

(b) Show that the above Lagrangian predicts relations between the physical couplings as

gppπ0 = −gnnπ0 =
1√
2
gpnπ+ =

1√
2
gpnπ− (5)

where the physical (charged and neutral) pion fields are related to the cartesian ones,
~π = (π1, π2, π3), as π± = (π1 ± iπ2)/

√
2 and π0 = π3.



6.) Nambu Jona-Lasinio (NJL) Model for Hadron Structure (18 pts.)
In mean-field approximation, the free energy density of the NJL model at finite temperature,
T , and quark chemical potential, µq, is given by

Ω(µq, T ;χ0)

V
= Gχ2

0−dq

∫

d3p

(2π)3
ω∗

p −Tdq

∫

d3p

(2π)3
[ln(1+e−(ω∗

p
−µq)/T )+ ln(1+e−(ω∗

p
+µq)/T )] (6)

with dq = NsNfNc: quark degeneracy, ω∗

p = (p2 +m∗

q
2)1/2: quark energy, G: 4-quark coupling,

χ0 = 〈0|q̄q|0〉: quark-antiquark condensate, m∗

q = mq − 2Gχ0: constituent quark mass.

(a) Take the T → 0 limit of Eq. (6) and use the quark density in writing your final result.
(hint: start by evaluating T ln(1 + e−x/T ) for T → 0 for positive/negative x)

(b) Take the limit of vanishing chemical potential of your result from part (a) to show that

Ω(m∗

q)

V
=

(m∗

q −mq)
2

4G
− dq

∫ d3p

(2π)3
ω∗

p . (7)

Briefly interpret the physical origin of the two terms.

(c) Derive the self-consistency gap equation for the constituent quark mass. What additional
ingredient is necessary to render the equation meaningful, and what is the pertinent
physical interpretation of this ingredient?



Formula Sheet

Euler Lagrange equation for field X:

∂µ

(

∂L
∂(∂µX)

)

− ∂L
∂X

= 0

Commutation relations

[τi, τj] = 2iεijkτk

Hadron masses:

mN = 940 MeV, mπ = 140 MeV

Conversion factor: h̄c = 197 MeV fm = 0.197 GeV fm


