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1.) Fermi Gas Model of Nuclear Matter (6+10+6 pts.)
For a convenient calculation of expectation values of 1- and 2-body operators, one defines
pertinent 1- and 2-body density matrices,
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in terms of A-body wave functions Ψ. In the non-interacting Fermi Gas model (FGM), the (fully
antisymmetrized and normalized) A-nucleon wave function is given by a Slater determinant as
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where φ~k(~r) = ei~k·~r/
√
V are plane wave single-nucleon wave functions (spin and isospin quantum

numbers are neglected here).

(a) Show that the 1-body density matrix for a local operator in the FGM is given by

ρ
(1)
FG(~r, ~r) =

1

V
. (4)

(b) Calculate the the 2-body density matrix in the FGM for local 2-body operators expressing
it in the form

ρ
(2)
FG(~r1, ~r2;~r1, ~r2) =

g−(x)

V 2
. (5)

with a suitably defined function g−(x) (taking the continuum limit).

(c) How does your results of part (b) change if the coordinate-space A-body wave function
is combined with a fully antisymmetric spin-isospin wave function?



2.) Relativistic Mean-Field Model for Nuclear Matter (16 pts.)
The Lagrangian for the relativistic σ-ω model is given by
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1
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(∂µφ)2 − 1

2
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σφ
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(Vµν)

2 +
1

2
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ωV
2
µ + ψ̄ [i/∂ −mN − gω/V + gσφ] ψ (6)

(a) Calculate the equation of motion for scalar field.

(b) Apply the mean-field approximation for the meson fields, 〈φ〉 ≡ φ0, 〈Vν〉 ≡ δν0Vν, and
write down the Lagrangian in this approximation. Establish the relation between the
scalar mean field and the scalar nucleon density, and identify an “in-medium” nucleon
mass in terms of the scalar mean field.



3.) Ω− Production in Hadronic Collisions (14 pts.)
High-energy negatively charged pions (π−) are directed on a hydrogen target (at rest). You
want to find the minimum total pion energy necessary to produce the triple-strange baryon,
Ω− (=(sss) in the quark model). The reaction will be of the type

π− + p→ Ω− +X (7)

but you have to conserve baryon number, strangeness and electric charge.

(a) How many K-mesons (=(s̄q) with q=u,d) and of which type (K+, K0) do you have to
minimally account for in the final state “X”?

(b) Calculate the minimal pion energy to produce the Ω−.



4.) Constituent Quark Model (21 pts.)
Consider the S = 3/2 baryon decuplet; use the notation e.g. d↑ for a spin-up down quark.

(a) Write down the spin-flavor wave function of the ∆++(Sz = +3/2). How can it be com-
patible with the Pauli exclusion principle?

(b) Using V -spin step-down operators (changing u into s quarks) to calculate the (normalized)
spin-flavor wave function of the Ξ∗,0(Sz = +3/2) baryon which carries 2 strange quarks.
By how much would you estimate the Ξ∗,0 mass to be larger then the ∆++ mass?

(c) Calculate the magnetic moments of the ∆++(Sz = +3/2) and Ξ∗,0(Sz = +3/2) using the
hadronic operator

µh =
∑

i

µi σ
i
z , µi =

ei

2mi

(8)

where the sum is over the quark constituents in the hadron and σi
z = diag(1,−1) is the

quark spin (Pauli) matrix (use mu,d=0.35GeV, ms=0.5GeV, electron charge e=0.3).



5.) QCD Vacuum and Chiral Symmetry (10+14+3 pts.)

(a) In the MIT bag model, the QCD vacuum is modeled by a background field generating
pressure P = −B and energy density ε = B (B is defined as negative). Hadrons are
constructed as “bags” of empty vacuum stabilized by the kinetic energy of the quarks
inside. Assume a spherical bag for which the ground state energy of one quark is given
by Ekin ∼ 2.04/R.

(a1) Write down the the total energy of the bag and find the radius, Rmin(B,Nq), which
minimizes this energy (Nq: no. of quarks in the bag).

(a2) Equate the minimum energy to the proton mass and find the explicit values for bag
radius (in fm) and bag constant, B (in GeV/fm3).

(b) The effective quark Lagrangian of the Nambu-Jona-Lasinio (NJL) model is given by

Leff = q̄(i/∂ −mq) +G
[

(q̄q)2 + (q̄γ5~τq)
2
]

(9)

In the following, you can put the bare quark mass mq=0 and ignore the pion-like inter-
action term (with γ5).

(b1) Assume the presence of a nonzero mean-field quark condensate, χ0 = 〈q̄q〉, and
linearize the scalar interaction term to find the mean-field Lagrangian of the NJL
model. Identify an effective quark mass in terms of the quark condensate χ0.

(b2) The vacuum free energy following from (b1) takes the form

Ω(χ0) = Gχ2
0 − 2NcNf

Λ
∫

0

d3p

(2π)3
ω∗

p (10)

with ω∗

p = (p2 + (m∗

q)
2)1/2, Nc=3. Fix the parameters of the model at Λ = 0.6 GeV,

GΛ2=2.4, resulting in a quark condensate of χ0 = 2(−0.24 GeV)3 (including u and
d flavors, i.e., Nf=2). Compute the constituent quark mass and the bag constant
defined as B = Ω(χ0)−Ω(χ0 = 0). Compare the latter to the MIT bag model result.

(c) What is special about the pion in QCD?



Formula Sheet

Continuum limit of momentum summation (Fermi sea):

∑

~ki

→ V

kF
∫

0
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,
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∫
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3
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(
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x
sin x− cos x) , with: x ≡ kF r , % =

k3
F

6π2

Euler Lagrange equation for field X:

∂µ

(

∂L
∂(∂µX)

)

− ∂L
∂X

= 0

Total center-of-mass energy squared of n-particle state (Lorentz invariant):

s = (p1 + p2 + · · ·+ pn)2 , pi : 4 − momenta

Hadron masses:

mN = 940 MeV, mπ = 140 MeV, mΩ = 1670 MeV, mK = 495 MeV

Indefinite integral with X = x2 + a2:

∫

dx x2
√
X =

x

4
X3/2 − a2

8
[x
√
X + a2 ln(x+

√
X)] + const

Conversion factor: h̄c = 197 MeV fm = 0.197 GeV fm


