FINAL EXAM
 PHYS 625 (Fall 2008), 12/10/08

Name:

Signature:

Duration: 120 minutes
Show all your work for full/partial credit
Quote your answers in units of MeV (or GeV) and fm , or combinations thereof

No.	Points
1	
2	
3	
4	
5	
Sum	

1.) Fermi Gas Model of Nuclear Matter

For a convenient calculation of expectation values of 1- and 2-body operators, one defines pertinent 1- and 2-body density matrices,

$$
\begin{align*}
\rho_{f i}^{(1)}\left(\overrightarrow{\mathbf{r}}, \overrightarrow{\mathbf{r}}^{\prime}\right) & =\int d^{3} r_{2} \cdots d^{3} r_{A} \Psi_{f}^{*}\left(\overrightarrow{\mathbf{r}}, \vec{r}_{2}, \ldots, \vec{r}_{A}\right) \Psi_{i}\left(\overrightarrow{\mathbf{r}}^{\prime}, \vec{r}_{2}, \ldots, \vec{r}_{A}\right) \tag{1}\\
\rho_{f i}^{(2)}\left(\overrightarrow{\mathbf{r}}_{\mathbf{1}}, \overrightarrow{\mathbf{r}}_{\mathbf{2}} ; \overrightarrow{\mathbf{r}}_{\mathbf{1}}^{\prime}, \overrightarrow{\mathbf{r}}_{\mathbf{2}}^{\prime}\right) & =\int d^{3} r_{3} \cdots d^{3} r_{A} \Psi_{f}^{*}\left(\overrightarrow{\mathbf{r}}_{\mathbf{1}}, \overrightarrow{\mathbf{r}}_{\mathbf{2}}, \vec{r}_{3}, \ldots, \vec{r}_{A}\right) \Psi_{i}\left(\overrightarrow{\mathbf{r}}_{\mathbf{1}}^{\prime}, \overrightarrow{\mathbf{r}}_{\mathbf{2}}^{\prime}, \vec{r}_{3}, \ldots, \vec{r}_{A}\right) \tag{2}
\end{align*}
$$

in terms of A-body wave functions Ψ. In the non-interacting Fermi Gas model (FGM), the (fully antisymmetrized and normalized) A-nucleon wave function is given by a Slater determinant as

$$
\Phi_{\vec{k}_{1}, \ldots, \vec{k}_{A}}\left(\vec{r}_{1}, \ldots, \vec{r}_{A}\right)=\frac{1}{\sqrt{A!}}\left|\begin{array}{ccc}
\phi_{\vec{k}_{1}}\left(\vec{r}_{1}\right) & \cdots & \phi_{\vec{k}_{A}}\left(\vec{r}_{1}\right) \tag{3}\\
\vdots & \ddots & \vdots \\
\phi_{\vec{k}_{1}}\left(\vec{r}_{A}\right) & \cdots & \phi_{\vec{k}_{A}}\left(\vec{r}_{A}\right)
\end{array}\right|
$$

where $\phi_{\vec{k}}(\vec{r})=\mathrm{e}^{i \vec{k} \cdot \vec{r}} / \sqrt{V}$ are plane wave single-nucleon wave functions (spin and isospin quantum numbers are neglected here).
(a) Show that the 1-body density matrix for a local operator in the FGM is given by

$$
\begin{equation*}
\rho_{\mathrm{FG}}^{(1)}(\vec{r}, \vec{r})=\frac{1}{V} . \tag{4}
\end{equation*}
$$

(b) Calculate the the 2-body density matrix in the FGM for local 2-body operators expressing it in the form

$$
\begin{equation*}
\rho_{\mathrm{FG}}^{(2)}\left(\vec{r}_{1}, \vec{r}_{2} ; \vec{r}_{1}, \vec{r}_{2}\right)=\frac{g_{-}(x)}{V^{2}} \tag{5}
\end{equation*}
$$

with a suitably defined function $g_{-}(x)$ (taking the continuum limit).
(c) How does your results of part (b) change if the coordinate-space A-body wave function is combined with a fully antisymmetric spin-isospin wave function?

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} m_{\sigma}^{2} \phi^{2}-\frac{1}{4}\left(V_{\mu \nu}\right)^{2}+\frac{1}{2} m_{\omega}^{2} V_{\mu}^{2}+\bar{\psi}\left[i \partial \partial-m_{N}-g_{\omega} V+g_{\sigma} \phi\right] \psi \tag{6}
\end{equation*}
$$

(a) Calculate the equation of motion for scalar field.
(b) Apply the mean-field approximation for the meson fields, $\langle\phi\rangle \equiv \phi_{0},\left\langle V_{\nu}\right\rangle \equiv \delta_{\nu 0} V_{\nu}$, and write down the Lagrangian in this approximation. Establish the relation between the scalar mean field and the scalar nucleon density, and identify an "in-medium" nucleon mass in terms of the scalar mean field. $\Omega^{-}(=(s s s)$ in the quark model $)$. The reaction will be of the type

$$
\begin{equation*}
\pi^{-}+p \rightarrow \Omega^{-}+X \tag{7}
\end{equation*}
$$

but you have to conserve baryon number, strangeness and electric charge.
(a) How many K-mesons $(=(\bar{s} q)$ with $q=u, d)$ and of which type $\left(K^{+}, K^{0}\right)$ do you have to minimally account for in the final state " X "?
(b) Calculate the minimal pion energy to produce the Ω^{-}.

Consider the $S=3 / 2$ baryon decuplet; use the notation e.g. $d \uparrow$ for a spin-up down quark.
(a) Write down the spin-flavor wave function of the $\Delta^{++}\left(S_{z}=+3 / 2\right)$. How can it be compatible with the Pauli exclusion principle?
(b) Using V-spin step-down operators (changing u into s quarks) to calculate the (normalized) spin-flavor wave function of the $\Xi^{*, 0}\left(S_{z}=+3 / 2\right)$ baryon which carries 2 strange quarks. By how much would you estimate the $\Xi^{*, 0}$ mass to be larger then the Δ^{++}mass?
(c) Calculate the magnetic moments of the $\Delta^{++}\left(S_{z}=+3 / 2\right)$ and $\Xi^{*, 0}\left(S_{z}=+3 / 2\right)$ using the hadronic operator

$$
\begin{equation*}
\mu_{h}=\sum_{i} \mu_{i} \sigma_{z}^{i} \quad, \quad \mu_{i}=\frac{e_{i}}{2 m_{i}} \tag{8}
\end{equation*}
$$

where the sum is over the quark constituents in the hadron and $\sigma_{z}^{i}=\operatorname{diag}(1,-1)$ is the quark spin (Pauli) matrix (use $m_{u, d}=0.35 \mathrm{GeV}, m_{s}=0.5 \mathrm{GeV}$, electron charge $e=0.3$).
(a) In the MIT bag model, the QCD vacuum is modeled by a background field generating pressure $P=-B$ and energy density $\epsilon=B$ (B is defined as negative). Hadrons are constructed as "bags" of empty vacuum stabilized by the kinetic energy of the quarks inside. Assume a spherical bag for which the ground state energy of one quark is given by $E_{k i n} \sim 2.04 / R$.
(a1) Write down the the total energy of the bag and find the radius, $R_{\min }\left(B, N_{q}\right)$, which minimizes this energy (N_{q} : no. of quarks in the bag).
(a2) Equate the minimum energy to the proton mass and find the explicit values for bag radius (in fm) and bag constant, B (in $\mathrm{GeV} / \mathrm{fm}^{3}$).
(b) The effective quark Lagrangian of the Nambu-Jona-Lasinio (NJL) model is given by

$$
\begin{equation*}
\mathcal{L}_{\mathrm{eff}}=\bar{q}\left(i \not \partial-m_{q}\right)+G\left[(\bar{q} q)^{2}+\left(\bar{q} \gamma_{5} \vec{\tau} q\right)^{2}\right] \tag{9}
\end{equation*}
$$

In the following, you can put the bare quark mass $m_{q}=0$ and ignore the pion-like interaction term (with γ_{5}).
(b1) Assume the presence of a nonzero mean-field quark condensate, $\chi_{0}=\langle\bar{q} q\rangle$, and linearize the scalar interaction term to find the mean-field Lagrangian of the NJL model. Identify an effective quark mass in terms of the quark condensate χ_{0}.
(b2) The vacuum free energy following from (b1) takes the form

$$
\begin{equation*}
\Omega\left(\chi_{0}\right)=G \chi_{0}^{2}-2 N_{c} N_{f} \int_{0}^{\Lambda} \frac{d^{3} p}{(2 \pi)^{3}} \omega_{p}^{*} \tag{10}
\end{equation*}
$$

with $\omega_{p}^{*}=\left(p^{2}+\left(m_{q}^{*}\right)^{2}\right)^{1 / 2}, N_{c}=3$. Fix the parameters of the model at $\Lambda=0.6 \mathrm{GeV}$, $G \Lambda^{2}=2.4$, resulting in a quark condensate of $\chi_{0}=2(-0.24 \mathrm{GeV})^{3}$ (including u and d flavors, i.e., $N_{f}=2$). Compute the constituent quark mass and the bag constant defined as $B=\Omega\left(\chi_{0}\right)-\Omega\left(\chi_{0}=0\right)$. Compare the latter to the MIT bag model result.
(c) What is special about the pion in QCD?

Formula Sheet

Continuum limit of momentum summation (Fermi sea):
$\sum_{\vec{k}_{i}} \rightarrow V \int_{0}^{k_{F}} \frac{d^{3} k}{(2 \pi)^{3}} \quad, \quad \int_{0}^{k_{F}} \frac{d^{3} k}{(2 \pi)^{3}} \mathrm{e}^{i \vec{k} \cdot \vec{r}}=\varrho \frac{3}{x^{2}}\left(\frac{1}{x} \sin x-\cos x\right)$, with $: x \equiv k_{F} r, \varrho=\frac{k_{F}^{3}}{6 \pi^{2}}$

Euler Lagrange equation for field X :

$$
\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} X\right)}\right)-\frac{\partial \mathcal{L}}{\partial X}=0
$$

Total center-of-mass energy squared of n-particle state (Lorentz invariant):

$$
s=\left(p_{1}+p_{2}+\cdots+p_{n}\right)^{2} \quad, \quad p_{i}: 4-\text { momenta }
$$

Hadron masses:

$$
m_{N}=940 \mathrm{MeV}, m_{\pi}=140 \mathrm{MeV}, m_{\Omega}=1670 \mathrm{MeV}, m_{K}=495 \mathrm{MeV}
$$

Indefinite integral with $X=x^{2}+a^{2}$:

$$
\int d x x^{2} \sqrt{X}=\frac{x}{4} X^{3 / 2}-\frac{a^{2}}{8}\left[x \sqrt{X}+a^{2} \ln (x+\sqrt{X})\right]+\text { const }
$$

Conversion factor: $\hbar c=197 \mathrm{MeV} \mathrm{fm}=0.197 \mathrm{GeV}$ fm

