FINAL EXAM (v1)

PHYS 201 (Spring 2007), 05/04/07

Name:		
Lab-Sect. no.:		
Signature:		

Duration: 120 minutes

Show all your work for full/partial credit!

Include the correct units in your final answers for full credit!

Unless otherwise stated, quote your results in SI units!

1.) Multiple Choice	(14 pts.)
---------------------	-----------

For each statement below, circle the correct answer (TRUE or FALSE, no reasoning required).

- (a) In projectile motion, the acceleration of the object keeps changing. TRUE FALSE
- (b) If the speed of an object changes, a nonzero net force is acting on that object. TRUE $\,$ FALSE
- (c) If the speed of an object is constant, there is no net force acting on the object. TRUE $\,$ FALSE
- (d) A potential energy must be based on a conservative force. TRUE $\,$ FALSE
- (e) If in a 2-body collision momentum is conserved, kinetic energy must also be conserved. TRUE FALSE
- (f) In the 1. law of thermodynamics, positive work done by a gas requires the gas to expand. TRUE FALSE
- (g) If the internal energy of an ideal gas increases, the average speed of the gas molecules decreases.

TRUE FALSE

No.	Points
1	
2	
3	
4	
5	
6	
7	
8	
9	
Sum	

2.) Projectile Motion (12 pts.)

A boy is throwing a baseball with initial speed of 22m/s toward a tall vertical building which is 38m away. The baseball hits the building after 2.8s. Ignore air resistance and assume the baseball to be launched from ground level.

- (a) What is the launch angle of the baseball?
- (b) What is the maximal height reached by the ball, and what is it's acceleration at that point?
- (c) How high above the ground does the ball strike the building and how fast is the ball at that moment?

3.) Newton's 2. Law of Motion

(12 pts.)

A truck is carrying a cargo box placed on its loading deck. The coefficient of static friction between the box and the bed surface is 0.45. On a horizontal road, the truck starts from rest and accelerates uniformly to 65mph. (1m/s=2.25mph).

- (a) Draw a free-body diagram of the box during the acceleration process.
- (b) What is the maximal acceleration the truck can have without the box starting to slide?
- (c) What is the shortest time for the truck to reach 65mph without the box starting to slide?

4.) Energy and Momentum Conservation

(10 pts.)

A cart of mass 2.2kg is pressed against another cart of mass 1kg with a spring in between them compressed by 25cm from its relaxed state. The spring constant is 9.1N/m. The carts are released on a horizontal frictionless table. Calculate the speed of each cart once it has moved free from the spring.

5.) Angular Momentum Conservation

(12 pts.)

A professor is sitting on a frictionless rotating stool. He holds a pair of dumbbells at a distance of 1.1m from the axis of rotation. The dumbbells have a mass of 6kg each, and the moment of inertia of the professor is $7kg m^2$. The initial rotation frequency is 0.75Hz.

- (a) Calculate the initial angular momentum of the system.
- (b) Now the professor pulls the dumbbells closer to the axis, to a distance of 0.25m (assume the moment of inertia of the professor to be constant). What is the final angular speed of the system?
- (c) Calculate the initial and final kinetic energy of the system. If they are different, why?

6.) Interference (8 pts.)

Two small loudspeakers are each emitting a pure tone of frequency 800Hz in phase (or in step). Originally, the speakers are at the same position, 6.5m away from the ear of a person. Then, one of the speakers is slowly moved away from the person, by an increasing distance d. $(v_{\text{sound}} = 343m/s)$

- (a) At what distance d does the sound first produce a destructive interference at the position of the person's ear?
- (b) At what distance d > 0 does the sound produce again a constructive interference at the position of the person's ear?

7.) Archimedes' Principle

(10 pts.)

An ore sample which looks like gold from the outside has a mass of 2.5kg. The sample is suspended by a light and thin cord and completely immersed into water. The tension in the cord is measured to be 21.1N. $(\rho_{water} = 1000kg/m^3, \rho_{gold} = 19300kg/m^3)$

- (a) What is the volume of the sample?
- (b) What is the density of the sample? Is it solid gold?

8.) Heat Transfer (10 pts.)

A cooking pot with a circular steel bottom of radius 18cm and thickness 0.7cm rests on a hot stove plate. The water inside the pot is at the boiling point $(T = 100^{\circ}C)$ and evaporates at a rate of 0.12kg/min. [latent heat of vaporization for water: $L_V = 2.256 \times 10^6 J/kg$, thermal conductivity of steel: $\kappa_{\text{steel}} = 50.2W/(m \cdot K^{\circ})$]

- (a) How much thermal power flows into the water?
- (b) What is the temperature at the lower surface of the pot (which is in contact with the stove plate)?

- 9.) First Law of Thermodynamics and Ideal Gas (12 pts.) 120 moles of an ideal gas are held in a cylinder at a constant pressure of $2.7 \times 10^5 Pa$. The gas is cooled and compressed from $2.1m^3$ to $1.6m^3$.
 - (a) By how much did the internal energy of the gas change (include the correct sign!)?
 - (b) How much work has been done on the gas (include the correct sign!)?
 - (c) How much heat has been extracted from the gas?