Solutions Exam-4 Spring 16

- 1.) Multiple Choice (18 pts.) For each statement below, circle the correct answer (TRUE or FALSE, no reasoning required).
 - (a) If the intensity of a sound wave increases tenfold, its intensity level increases by $10\,dB$. TRUE FALSE
 - (b) When a police car with its sirene on is approaching you, the sirene frequency you are hearing is smaller.

 TRUE FALSE
 - (c) When adding heat to a substance during a phase change, the temperature of the substance keeps increasing.

 TRUE FALSE
 - (d) The internal energy of an ideal gas is nothing but the sum of the kinetic energies of all gas particles.
 TRUE FALSE
 - (e) Irreversible processes do not change the total entropy of the Universe. TRUE FALSE
 - (f) If the entropy of a substance decreases, there must be some other substance whose entropy increases by at least as much.

 TRUE FALSE

No.	Points
1	YZ
2	W
3	CH
4	RR
5	TW
Sum	

A transverse wave is propagating in x-direction and described by the equation

$$y(x,t) = 3m \sin[(2/s)t - (0.8/m)x].$$
 (1)

Extract the amplitude, frequency, wavelength, and propagational speed of the wave.

$$=$$
 $A = 3m$

$$\frac{2\pi}{\lambda} = \frac{0.8}{m} \qquad \Rightarrow \qquad \lambda = \frac{2\pi}{0.8} \, \text{m} = 7.85 \, \text{m}$$

$$V = f\lambda = 2.5 \frac{m}{5}$$

A bullet (mass 22g) at a speed of 930m/s is shot into a bucket of 10 kg of water at room temperature $(20^{\circ}C)$ and gets stopped in it.

- (a) How much energy does the bullet deposit into the water?
- (b) Estimate the maximal increase of the water temperature once it is equilibrated. (Neglect any temperature changes of the bullet.)

(b)
$$Q = MC \Delta T$$

$$\Rightarrow \Delta T = \frac{Q}{MC} = \frac{\Delta E}{M_W C_W} = 0.23 G^{\circ}$$

4.) Thermal Processes for an Ideal Gas

(24 pts.)

A fixed amount of ideal gas of initial volume $0.1 \, m^3$ and initial pressure $6 \cdot 10^5 Pa$ is first cooled isochorically (at constant volume) down to a pressure of $2 \cdot 10^5 Pa$, and then expanded isobarically (at constant pressure) to a final volume of $0.3 \, m^3$.

- (a) Draw the p-V diagram of this 2-step process and state whether heat has been added or taken out of the gas in each step (no calculation necessary).
- (b) What is the ratio of initial to final temperature?
- (c) How much work does the gas do during the process?
- (d) How much total heat is exchanged between the gas and the environment during the total process?

(a)

(b)
$$\rho_i V_i = nRT_i$$
 $\rho_f V_f = nRT_f$

$$\frac{T_f}{T_i} = \frac{\rho_f V_f}{\rho_i V_i} = \frac{2.0.3}{6.0.1} = 1$$

(c)
$$W = P \Delta V = 2.10^5 \cdot 0.2 = 0.4 \cdot 10^5$$

(d) total
$$\Delta U = Q - W = 0$$
 (since $\Delta T = 0$)

5.) Carnot Refrigerator

(24 pts.)

A refrigerator with perfect efficiency cools its compartment at constant temperature of $-15^{\circ}C$ and exhausts heat into the surrounding room at $20^{\circ}C$. Two kilogram of water at room temperature are put into the freezer.

- (a) Calculate the coefficient of performance of the refrigerator
- (b) Calculate the heat to be extracted from the water to cool it to the temperature inside the freezer.
- (c) How much work (electrical energy) must be done by the freezer?
- (d) How much heat does the freezer exhaust into the environment?

(a)
$$K = \frac{Q_c}{W} = \frac{Q_c}{Q_H - Q_c} = \frac{1}{\frac{Q_H}{Q_c} - 1} = \frac{1}{\frac{T_H}{T_c} - 1} = \frac{7.376}{\frac{Q_c}{Q_c} - 1}$$

(c)
$$W = \frac{Q_c}{K} = 121500$$